n阶矩阵是不是就有n个特征值?而且对应特征向量有无数个?

如题所述

N阶矩阵有N个特征值,每个特征值有无数个特征向量,但是线性无关的特征向量个数不超过对应特征值的重根次数; 满秩矩阵有N个相异的特征值

特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。

扩展资料

求矩阵的全部特征值和特征向量的方法如下:

第一步:计算的特征多项式;

第二步:求出特征方程的全部根,即为的全部特征值;

第三步:对于的每一个特征值,求出齐次线性方程组。

判断相似矩阵的必要条件

设有n阶矩阵A和B,若A和B相似(A∽B),则有:

1、A的特征值与B的特征值相同——λ(A)=λ(B),特别地,λ(A)=λ(Λ),Λ为A的对角矩阵;

2、A的特征多项式与B的特征多项式相同——|λE-A|=|λE-B|。

温馨提示:内容为网友见解,仅供参考
第1个回答  2019-07-23

n阶矩阵有n个特征值(包括重根),而且对应特征向量有无数个。并且不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值.。

求矩阵的全部特征值和特征向量的方法如下:

第一步:计算的特征多项式;

第二步:求出特征方程的全部根,即为的全部特征值;

第三步:对于的每一个特征值,求出齐次线性方程组的一个基础解系,则可求出属于特征值的全部特征向量。

扩展资料:

设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。

矩阵可对角化有两个充要条件

1、矩阵有n个不同的特征向量;

2、特征向量重根的重数等于基础解系的个数。对于第二个充要条件,则需要出现二重以上的重特征值可验证(一重相当于没有重根)。

本回答被网友采纳
第2个回答  推荐于2017-12-15
N阶矩阵有N个特征值,每个特征值有无数个特征向量,但是线性无关的特征向量个数不超过对应特征值的重根次数; 满秩矩阵有N个相异的特征值本回答被网友采纳
第3个回答  2021-01-29
n阶矩阵有n个特征值(包括重根)。证明:因为矩阵A的特征值就是其特征方程|A-λI|=0的根(I是E的另一种写法),其中λ的最高次数是n。由代数基本定理知道n次多项式最多有n个不同的根,若把相同的根也计数,就有且仅有n个根了,所以特征值一定有n个(计重数)本回答被网友采纳
第4个回答  2013-10-29
不对的,应该是满秩的话,并且特征向量也是N个。
相似回答