1+1/1+2+1/1+2+3+...+1/1+2+3+4+...+99+100

写下过程
到底哪个对?

1+1/1+2+1/1+2+3+1/1+2+3+4+.........1/1+2+3+........+100
=1+1/[(1+2)×2÷2]+1/[(1+3)×3÷2]+1/[(1+4)×4÷2]+........1/[(1+100)×100÷2]
=1+2/(1+2)×2+2/(1+3)×3+2/(1+4)×4+........2/(1+100)×100
=1+2×(1/2-1/3+1/3-1/4+1/4-1/5+.......+1/100-1/101)
=1+2×1/101
=1又2/101
温馨提示:内容为网友见解,仅供参考
第1个回答  2008-08-14
可以写出通项公式,
an=2/[n(n+1)] n为自然数
Sn=2[(1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/99-1/100)+(1/100-1/101)]
=2[1-1/101]=200/101
第2个回答  2012-07-23
=2/1*2+2/2*3+2/3*4+...+2/99*100
=2*(1-1/2+1/2-1/3+...-1/99+1/99-1/100)
=2*99/100
=200/101

1+1\/1+2+1\/1+2+3+...+1\/1+2+3+4+...+99+100
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+...1\/1+2+3+...+100 =1+1\/[(1+2)×2÷2]+1\/[(1+3)×3÷2]+1\/[(1+4)×4÷2]+...1\/[(1+100)×100÷2]=1+2\/(1+2)×2+2\/(1+3)×3+2\/(1+4)×4+...2\/(1+100)×100 =1+2×(1\/2-1\/3+1\/3-1\/4+1\/4-1\/5...

1+1\/1+2+1\/1+2+3+1\/1+2+3+4+...+1\/1+2+3+...+99+100
1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+……+1\/(1+2+3+……+100)=1+2\/[(1+2)*2]+2\/[(1+3)*3]+2\/[(1+4)*4]+……+2\/[(1+100)*100]=1+2*[(1\/2-1\/3)+(1\/3-1\/4)+(1\/4-1\/5)+(1\/5-1\/6)+……+(1\/99-1\/100)]=1+2*(1\/2-1\/100)=1+49\/...

1+1\/1+2+1\/1+2+3+...+1\/1+2+3+...+99 等于多少 请写出详细的过程与算...
所以 1+1\/1+2+1\/1+2+3+...+1\/1+2+3+...+99 =2\/(1*2)+2\/(2*3)+...+2\/(99*100)=2(1-1\/2+1\/2-1\/3+...+1\/99-1\/100)=2*99\/100 =99\/50

1+1\/1+2+1\/1+2+3+1\/1+2+3+4+1\/1+2+3+4+5+...+1\/!+2+3+...+100=?_百 ...
1\/1+2+3+...+n=2\/n(n+1)=(2\/n)-(2\/n+1)所以1+ 1\/1 +2+ 1\/1 +2+3+ 1\/1 +2+3+4+ 1\/1 +2+3+4+5+...+ 1\/1 +2+3+...+100=1+(2\/2-2\/3)+(2\/3-2\/4)+(2\/4-2\/5)+...+(2\/100-2\/101)=1+1-2\/101=200\/101 ...

1+1\/1+2+1\/1+2+3+1\/1+2+3+4+……1\/1+2+3+...+100等于多少
答:题目应该缺少了大量的括号吧?1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)第n项的分母是自然数之和(n+1)*n\/2 所以:1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+...+2\/(...

1+1\/1+2+1\/1+2+3+1\/1+2+3+4+...+1\/1+2+3+...+100这道数学题怎么做,尽量...
化减:2\/1*2+2\/2*3+2\/3*4+…然后列项:(2\/1-2\/2)+(2\/2-2\/3)…然后化简:2\/1-2\/101=200\/101 如果取极限得2

怎样算出:1+1\/1+2,+1\/1+2+3,+1\/1+2+3+4...1+1\/1+2+3+4+5...+100...
1+2+3=3*4\/2 1+2+3+4=4*5\/2 1+2+3+……+100=100*101\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*4)+1\/(4*5)+……+1\/(...

1 + 1\/1+2 + 1\/1+2+3 + 1\/1+2+3+4 + ... + 1\/1+...+100
原式可化为1+1\/3+1\/6+1\/10+1\/15+1\/21+...+1\/5050 =1+2\/2X3+2\/3X4+2\/4X5+…2\/100X101 =1+2(1\/2X3+1\/3X4+1\/4X5+…1\/100X101)=1+2(1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+...+1\/100-1\/101)=1+2(1\/2-1\/101)=1+2(99\/202)=200\/101 ...

1+1+2\/1+1+2+3\/1+...+1+2+3+...+100\/1怎么简算?急!!
原式第1项=2*(1\/1-1\/2)原式第2项=2*(1\/2-1\/3)原式第3项=2*(1\/3-1\/4)依次类推~~~原式第99项=2*(1\/99-1\/100)原式第100项=2*(1\/100-1\/101)依次类推 所以这100项加起来 就=2*(1\/1-1\/2 + 1\/2-1\/3 + 1\/3-1\/4 + ··· +1\/99-1\/100 + 1\/10...

1+2分之1加2+3分之1加3+4分之一一直到99+100分之一???
专为调和级数所用)1+2+3+4+5+……+100=5050 1+1\/2+1\/3+...+1\/100=ln100+0.57722≈4.60517+0.57722=5.18239 因此1+1\/2+2+1\/3+3+1\/4+4+...+99+1\/100 = (1+2+3+4+5+…+100)+(1+1\/2+1\/3+...+1\/100)-1=5050+5.18239-1= 5054.18239 ...

相似回答
大家正在搜