计算: 1/2+(1/3+2/3)+(1/4+2/4+3/4)+(1/5+2/5+3/5+4/5)+…+(1/60+2/60+…+59/60) 要写过程,谢谢啦!

如题所述

1/3+2/3=1
1/4+2/4+3/4=2/4+1=1/2+1
1/5+2/5+3/5+4/5=(1/5+4/5)+(2/5+3/5)=1+1
1/6+2/6+3/6+4/6+5/6=(1/6+5/6)+(2/6+4/6)+3/6=1+1+1/2
应该能看出规律了吧
那么7为分母的结果为1+1+1
8为分母的结果为1+1+1+1/2
9的为1+1+1+1
10的为1+1+1+1+1/2

所以原式=1/2+2/2+3/2+……+59/2
=(1+2+……+59)/2
=59*60/2/2
=885
温馨提示:内容为网友见解,仅供参考
第1个回答  2008-09-26
=1/2+2/2+3/2+4/2+5/2+.....+59/2
=(1/2+59/2)*59*(1/2)
=885

计算:1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+(1\/5+2\/5+3\/5+4\/5)+…+(1\/60+2\/...
1\/3+2\/3=1 1\/4+2\/4+3\/4=2\/4+1=1\/2+1 1\/5+2\/5+3\/5+4\/5=(1\/5+4\/5)+(2\/5+3\/5)=1+1 1\/6+2\/6+3\/6+4\/6+5\/6=(1\/6+5\/6)+(2\/6+4\/6)+3\/6=1+1+1\/2 应该能看出规律了吧 那么7为分母的结果为1+1+1 8为分母的结果为1+1+1+1\/2 9的为...

1\/2 +(1\/3+2\/3)+(1\/4+2\/4+3\/4)+(1\/5+2\/5+3\/5+4\/5)+……+(1\/60+2\/60...
首尾相加1\/60 +59\/60=1,2\/60 +58\/60=1,……,29\/60 +31\/60=1 还有30\/60=1\/2,结果是29个1加1\/2=29+1\/2,按照同样方法 可得原式=0.5+1+1.5+2+2.5+3+……+29.5 =(0.5+29.5)*59\/2=885

1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+(1\/5+2\/5+3\/5+4\/5)+"""+(1\/60+2\/60+...
所以原式=1\/2+2\/2+3\/2+…+(60-1)\/2 =(1\/2)(1+2+…+59)=885

1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+(1\/5+2\/5+3\/5+4\/5)+...+(1\/60+2\/60+3...
所以原式=1\/2+2\/2+3\/2+……+59\/2 =(1+2+……+59)\/2 =59*60\/2\/2 =885

(1\/2+1\/3+2\/3+1\/4+2\/4+3\/4+...1\/60+2\/60+3\/60+...+59\/60 小学奥数巧算...
将所有分母相同的项合并在一起,利用高斯求和(首项加末项之和乘以项数除以2)可知,分别等于(x-1)\/2,x从2到60,再将分母高斯求和,即可求解。

1\/2+1\/3+2\/3+1\/4+2\/4+3\/4+1\/5+2\/5+3\/5+4\/5+...+1\/60+...+59\/60
60 然后把分母相同的项都加起来 就能得到 1\/2=1\/2 1\/3+2\/3=1 1\/4+2\/4+3\/4=3\/2 1\/5+2\/5+3\/5+4\/5=2 ……再通分,分母是2,分子相加 =(1+2+……+59)\/2 分子1+2+3+……+59为等差数列 求和可以用 首项加末项的和 乘以项数 除以二 则=(1+59)*59\/2\/2 ...

1\/2+1\/3+2\/3+1\/4+2\/4+3\/4+1\/5+2\/5+3\/5+4\/5+...+1\/60+...+59\/60
所以原式=1\/2+2\/2+3\/2+……+59\/2 =(1+2+……+59)\/2 =(1+59)*59\/2\/2 =885 回答者: 小南VS仙子 - 高级魔法师 七级 9-17 17:39 1\/2+(1\/3+2\/3)+(1\/4+3\/4)+2\/4+(1\/5+4\/5)+(2\/5+3\/5)+...+(29\/60+31\/60)+30\/60= 从3数起,有58个数,...

计算:1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/50+2\/50+3\/5
回答:原式=1\/2+2\/2+3\/2+4\/2+...+49\/2 =1\/2×(1+2+...+49) =1\/2×(1+49)×49÷2 =612.5

1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/40+2\/40+...+38\/40+39\/40)
则上面的式子为0\/1+1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/60+2\/60+3\/60+...+59\/60)观察对于上面的第n项,分子为n(n-1)\/2 分母为n,则第n项f(n)=(n-1)\/2=n\/2-1\/2,那么对于上面60项之和 S(60)=(1\/2-1\/2)+(2\/2-1\/2)+(3\/2-1\/2)+..+(60\/2-1\/2...

奥数题,五年级分数计算题。占位占位
所以:相同分母相加之和=[(n-1)n\/2]\/n=(n-1)\/2 根据以上规律可以计算如下:1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/60+2\/60+...+58\/60+59\/60)=1\/2+2\/2+3\/2+...+(60-1)\/2 =(1+2+3+...+59)\/2 =[(1+59)*59\/2]\/2 =30*59\/2 =15*59 =885 ...

相似回答
大家正在搜