数是怎样产生的?

古人是用实物记数.接绳记数.刻道记数.很麻烦......说一说

类是动物进化的产物,最初也完全没有数量的概念。但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。比如捕获了一头野兽,就用1块石子代表。捕获了3头,就放3块石子。"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。我国古书《易经》中有"结绳而治"的记载。传说古代波斯王打仗时也常用绳子打结来计算天数。用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。这些办法用得多了,就逐渐形成数的概念和记数的符号。
数的概念最初不论在哪个地区都是1、2、3、4……这样的自然数开始的,但是记数的符号却大小相同。
古罗马的数字相当进步,现在许多老式挂钟上还常常使用。
实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000)。这7个符号位置上不论怎样变化,它所代表的数字都是不变的。它们按照下列规律组合起来,就能表示任何数:
1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。如:"III"表示"3";"XXX"表示"30"。
2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。
3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。如:""表示 "15,000",""表示"165,000"。
我国古代也很重视记数符号,最古老的甲骨文和钟鼎中都有记数的符号,不过难写难认,后人没有沿用。到春秋战国时期,生产迅速发展,适应这一需要,我们的祖先创造了一种十分重要的计算方法--筹算。筹算用的算筹是竹制的小棍,也有骨制的。按规定的横竖长短顺序摆好,就可用来记数和进行运算。随着筹算的普及,算筹的摆法也就成为记数的符号了。算筹摆法有横纵两式,都能表示同样的数字。
从算筹数码中没有"10"这个数可以清楚地看出,筹算从一开始就严格遵循十位进制。9位以上的数就要进一位。同一个数字放在百位上就是几百,放在万位上就是几万。这样的计算法在当时是很先进的。因为在世界的其他地方真正使用十进位制时已到了公元6世纪末。但筹算数码中开始没有"零",遇到"零"就空位。比如"6708",就可以表示为"┴ ╥ "。数字中没有"零",是很容易发生错误的。所以后来有人把铜钱摆在空位上,以免弄错,这或许与"零"的出现有关。不过多数人认为,"0"这一数学符号的发明应归功于公元6世纪的印度人。他们最早用黑点(·)表示零,后来逐渐变成了"0"。
说起"0"的出现,应该指出,我国古代文字中,"零"字出现很早。不过那时它不表示"空无所有",而只表示"零碎"、"不多"的意思。如"零头"、"零星"、"零丁"。"一百零五"的意思是:在一百之外,还有一个零头五。随着阿拉数字的引进。"105"恰恰读作"一百零五","零"字与"0"恰好对应,"零"也就具有了"0"的含义。
如果你细心观察的话,会发现罗马数字中没有"0"。其实在公元5世纪时,"0"已经传入罗马。但罗马教皇凶残而且守旧。他不允许任何使用"0"。有一位罗马学者在笔记中记载了关于使用"0"的一些好处和说明,就被教皇召去,施行了拶(zǎn)刑,使他再也不能握笔写字。
但"0"的出现,谁也阻挡不住。现在,"0"已经成为含义最丰富的数字符号。"0"可以表示没有,也可以表示有。如:气温0℃,并不是说没有气温;"0"是正负数之间唯一的中性数;任何数(0除外)的0次幂等于1;0!=1(零的阶乘等于1)。
除了十进制以外,在数学萌芽的早期,还出现过五进制、二进制、三进制、七进制、八进制、十进制、十六进制、二十进制、六十进制等多种数字进制法。在长期实际生活的应用中,十进制最终占了上风。
现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。实际上它们是古代印度人最早使用的。后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。
数的概念、数码的写法和十进制的形成都是人类长期实践活动的结果。
随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了。中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。自然数也称为正整数。
随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西。为了表示这样的量,又产生了负数。正整数、负整数和零,统称为整数。如果再加上正分数和负分数,就统称为有理数。有了这些数字表示法,人们计算起来感到方便多了。
但是,在数字的发展过程中,一件不愉快的事发生了。让我们回到大经贸部2500年前的希腊,那里有一个毕达哥拉斯学派,是一个研究数学、科学和哲学的团体。他们认为"数"是万物的本源,支配整个自然界和人类社会。因此世间一切事物都可归结为数或数的比例,这是世界所以美好和谐的源泉。他们所说的数是指整数。分数的出现,使"数"不那样完整了。但分数都可以写成两个整数之比,所以他们的信仰没有动摇。但是学派中一个叫希帕索斯的学生在研究1与2的比例中项时,发现没有一个能用整数比例写成的数可以表示它。如果设这个数为X,既然,推导的结果即x2=2。他画了一个边长为1的正方形,设对角线为x ,根据勾股定理x2=12+12=2,可见边长为1的正方形的对角线的长度即是所要找的那个数,这个数肯定是存在的。可它是多少?又该怎样表示它呢?希帕索斯等人百思不得其解,最后认定这是一个从未见过的新数。这个新数的出现使毕达哥拉斯学派感到震惊,动摇了他们哲学思想的核心。为了保持支撑世界的数学大厦不要坍塌,他们规定对新数的发现要严守秘密。而希帕索斯还是忍不住将这个秘密泄露了出去。据说他后来被扔进大海喂了鲨鱼。然而真理是藏不住的。人们后来又发现了很多不能用两整数之比写出来的数,如圆周率 就是最重要的一个。人们把它们写成 π、等形式,称它们为无理数。
有理数和无理数一起统称为实数。在实数范围内对各种数的研究使数学理论达到了相当高深和丰富的程度。这时人类的历史已进入19世纪。许多人认为数学成就已经登峰造极,数字的形式也不会有什么新的发现了。但在解方程的时候常常需要开平方如果被开方数负数,这道题还有解吗?如果没有解,那数学运算就像走在死胡同中那样处处碰壁。于是数学家们就规定用符号"i "表示"-1"的平方根,即i=,虚数就这样诞生了。"i "成了虚数的单位。后人将实数和虚数结合起来,写成 a+bi的形式(a、b均为实数),这就是复数。在很长一段时间里,人们在实际生活中找不到用虚数和复数表示的量,所以虚数总让人感到虚无缥缈。随着科学的发展,虚数现在在水力学、地图学和航空学上已经有了广泛的应用,在掌握和会使用虚数的科学家眼中,虚数一点也不"虚"了。
数的概念发展到虚和复数以后,在很长一段时间内,连某些数学家也认为数的概念已经十分完善了,数学家族的成员已经都到齐了。可是1843年10月16日,英国数学家哈密尔顿又提出了"四元数"的概念。所谓四元数,就是一种形如的数。它是由一个标量 (实数)和一个向量(其中x 、y 、z 为实数)组成的。四元数的数论、群论、量子理论以及相对论等方面有广泛的应用。与此同时,人们还开展了对"多元数"理论的研究。多元数已超出了复数的范畴,人们称其为超复数。
由于科学技术发展的需要,向量、张量、矩阵、群、环、域等概念不断产生,把数学研究推向新的高峰。这些概念也都应列入数字计算的范畴,但若归入超复数中不太合适,所以,人们将复数和超复数称为狭义数,把向量、张量、矩阿等概念称为广义数。尽管人们对数的归类法还有某些分歧,但在承认数的概念还会不断发展这一点上意见是一致的。到目前为止,数的家庭已发展得十分庞大。
温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2016-08-30
  数字并不是阿拉伯人发明创造的,而是发源于古印度。
  数字后来被阿拉伯人用于经商而掌握,经改进,并传到了西方。西方人由于首先接触到阿拉伯人使用过这些数据,便误以为是他们发明的,所以便将这些数字称为阿拉伯数字,造成了这一历史的误会。后来,随着在世界各地的普遍传播,大家都都认同了“阿拉伯数字”这个说法,使世界上很多地方的人都误认为是阿拉伯人发明的数字,实际上是阿拉伯人最早开始广泛使用数字。传到欧洲后,欧洲人非常喜爱这套方便适用的记数符号,尽管后来人们知道了事情的真相,但由于习惯了,就一直没有改正过来。
  数字是古代印度人在生产和实践中逐步创造出来的。
  在古代印度,进行城市建设时需要设计和规划,进行祭祀时需要计算日月星辰的运行,于是,数学计算就产生了。大约在公元前3000多年,印度河流域居民的数字就比较先进,而且采用了十进位的计算方法。
  到公元前三世纪,印度出现了整套的数字,但在各地区的写法并不完全一致,其中最有代表性的是婆罗门式:这一组数字在当时是比较常用的。它的特点是从“1”到“9”每个数都有专字。现代数字就是由这一组数字演化而来。在这一组数字中,还没有出现“0”(零)的符号。“0”这个数字是到了笈多王朝(公元320—550年)时期才出现的。公元四世纪完成的数学著作《太阳手册》中,已使用“0”的符号,当时只是实心小圆点“·”。后来,小圆点演化成为小圆圈“0”。这样,一套从“1”到“0”的数字就趋于完善了。这是古代印度人民对世界文化的巨大贡献。
  古印度发明的数字首先传到斯里兰卡、缅甸、柬埔寨等印度的近邻国家。

  传播留名
  公元七到八世纪,地跨亚非欧三洲的阿拉伯帝国崛起。阿拉伯帝国在向四周扩张的同时,阿拉伯人也广泛汲取古代希腊、罗马、印度等国的先进文化,大量翻译这些国家的科学著作。公元771年,印度的一位旅行

  家毛卡经过长途跋涉,来到了阿拉伯帝国阿拔斯王朝首都巴格达。毛卡把随身携带的一部印度天文学著作《西德罕塔》,献给了当时的哈里发(国王)曼苏尔。曼苏尔十分珍爱这部书,下令翻译家将它译为阿拉伯文。译本取名《信德欣德》。这部著作中应用了大量的印度数字。由此,印度数字便被阿拉伯人吸收和采纳。
  此后,阿拉伯人逐渐放弃了他们原来作为计算符号的28个字母,而广泛采用印度数字,并且在实践中还对印度数字加以修改完善,使之更便于书写。
  阿拉伯人掌握了印度数字后,很快又把它介绍给欧洲人。中世纪的欧洲人,在计数时使用的是冗长的罗马数字,十分不方便。因此,简单而明了的印度数字一传到欧洲,就受到欧洲人的欢迎。可是,开始时印度数字取代罗马数字,却遭到了罗马教皇的强烈反对,因为这是来自“异教徒”的知识。但实践证明印度数字远远优于罗马数字。
  1202年,意大利出版了一本重要的数学书籍《计算之书》,书中广泛使用了由阿拉伯人改进的印度数字,它标志着新数字在欧洲使用的开始。这本书共分十五章。在第一章开头就写道:“印度的九个数目字是‘9、8、7、6、5、4、3、2、1’,用这九个数字以及阿拉伯人叫做‘零’的记号‘0’,任何数都可以表示出来。”
  随着岁月的推移,到十四世纪,中国印刷术传到欧洲,更加速了印度数字在欧洲的推广与应用。印度数字逐渐为全欧洲人所采用。
  西方人接受了经阿拉伯传来的印度数字,但他们当时忽视了古代印度人,而只认为是阿拉伯人的功绩,因而称其为阿拉伯数字,这个错误的称呼一直流传至今。

  具体说明
  数字,是一种既陌生、又熟悉的名词。它由0~9十个字母组成。数字不单单包括计数,还有丰富的哲学内涵。
  1:可以看作是数字“1”,一根棍子,一个拐杖,一把竖立的枪,一支蜡烛,一维空间……
  2:可以看作是数字“2”,一只木马,一个下跪着的人,一个陡坡,一个滑梯,一只鹅……
  3:可以看作是数字“3”,两只手指,乳房,斗鸡眼,树杈,倒着的w……
  4:可以看作是数字“4”,一个蹲着的人,小帆船,小红旗,小刀……
  5:可以看作是数字“5”,大肚子,小屁股,音符……
  6:可以看作是数字“6”,小蝌蚪,一个头和一只手臂露在外面的人……
  7:可以看作是数字“7”,拐杖,小桌子,板凳,三岔路口,“丁”形物,镰刀……
  8:可以看作是数字“8”,数学符号“∞”,花生米,套环,雪人……
  9:可以看作是数字“9”,一个靠着坐的人,小嫩芽……
  0:可以看作是数字“0”,胖乎乎的人,圆形“○”,鞋底,脚丫,二维空间,瘦子的脸,鸡蛋……
  数字在复数范围内可以分实数和虚数,实数又可以划分有理数和无理数或分为整数和小数,任何有理数都可以化成分数形式.

  罗马
  罗马人在希腊数字的基础上,建立了自己的记数方法。罗马人用字母表示数,Ⅰ表示1,Ⅴ表示5,Ⅹ表示10,C表示100,而M表示1000。这样,大数字写起来就比较简短,但计算仍然十分不便。因此,今天人们已经很少使用罗马数字记数了,但有时也还可以见到使用在年号或时钟上的罗马数字。
  数字是一种用来表示数的书写符号。
  不同的记数系统可以使用相同的数字,比如,十进制和二进制都会用到数字“0”和“1”。
  同一个数在不同的记数系统中有不同的表示,比如,数37(阿拉伯数字十进制)可以有多种写法:
  中文数字写作三十七
  罗马数字写作XXXVII
  阿拉伯数字二进制写作100101
  含义
  在相应的记数系统中,数字位置决定了它所表示的值。例如“3”这个数字:
  在十进制数37 中,它表示的值为30(十进制);
  在八进制数23 中,它表示的值为3(十进制);
  在八进制数 37 中,它表示的值为3×8=24(十进制)。

  中文
  小写:〇、一、二、三、四、五、六、七、八、九、十、百、千、万、亿、兆、京、垓、秭、穰、沟、涧、正、载、极
  大写:零、壹、贰、叁、肆、伍、陆、柒、捌、玖、拾、佰、仟、万、亿、兆、京、垓、秭、穰、沟、涧、正、载、极
  天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸
  地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥
  生肖:鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪
  廿(niàn,20,大写:念)、卅(30,sà)、卌(40,xì)
  皕(bì,200)
第2个回答  2008-09-10
数的第一次使用可回溯到大约西元前三万年前,当计数符号被旧石器时代的人使用的时期。现今所知最早的一个例子在南非的一个洞穴内。[1]此一系统没有进位制的概念(如现今所用的十进位制),这使得它表示大数的能力受到了限制。现今所知最早有进位制的系统则是美索不达米亚的六十进位制(约西元前3400年),而最早的十进位制在西元前3100年的埃及

数的产生历程
1、数──自然科学之父,起源于原始人类用来数数计数的记号形成自然数“数”的符号,是人类最伟大发明。若干年以前,人类的祖先为了生存,往往几十人在一起,过着群居的生活。他们白天共同劳动,搜捕野兽、飞禽或采集果薯食物;晚上住在洞穴里,共同享用劳动所得。2、在长期的共同劳动和生活中,他们之间...

数是如何产生和发展的
数是人类在生产劳动等社会实践中产生的。1、在远古时期,我们的祖先在狩猎、捕鱼以及后来的家禽饲养和劳动工具的制作等等生产劳动过程中,为了估计产量和生活需要量,逐渐产生了有关数的概念。例如大家出去打猎可能打得到,也可能一无所获,于是就渐渐产生了“有”与“无”的概念,进而产生了“多”与“少...

关于数的产生的资料有关数的产生内容资料
1、数的产生:很久以前,人们在生产劳动中就有了计数的需要。例如,人们出去打猎的时候,要数一数共出去了多少人,拿了多少件武器;回来的时候,要数一数捕获了多少只野兽等等,这样就产生了数。2、数的概念的产生原始时代的人类,为了维持生活他们必须每天外出狩猎和采集果实。有时他们满载而归,有时...

数是怎样产生的?
数的产生:人类最早用来计数的工具是手指和脚趾,但它们只能表示20以内的数字。当数目很多时,大多数的原始人就用小石子和豆粒来记数。渐渐地人们不满足粒为单位的记数,又发明了打绳结、刻画记数的方法,在兽皮、兽骨、树木、石头上刻画记数。中国古代是用木、竹或骨头制成的小棍来记数,称为算筹...

数是怎样产生的(数是怎样产生的资料)
1.数的产生:早在原始人时代,人们在生产活动中注意到一只羊和许多羊,一头狼和整群狼在数量上的差异,随着时间的推移慢慢的产生了数的概念。2.最早人们利用自己的十个指头来记数,当指头不敷应用时,人们开始采用“石头记数”“结绳记数”和“刻痕记数”。3.在经历了数万年的发展后,直到距今大约...

数是怎样产生的有哪些计数方法
数的产生:早在原始人时代人们在生产活动中就注意到一只羊与许多羊,一头狼与整群狼在数量上的差异,随着时间的推移慢慢的产生数的概念。数的概念的形成与火的使用一样古老,大约是在30万年以前,数的产生对于人类文明的意义也决不亚于火的使用。最早人们利用自己的十个指头来记数,当指头不敷应用时...

有关数的产生和计数法的知识
数的产生是原始人类用来数数计数的记号形成自然数“数”的符号 数的产生:早在原始人时代,人们在生产活动中注意到一只羊与许多羊,一头狼与整群狼在数量上的差异,随着时间的推移慢慢的产生了数的概念。最早人们利用自己的十个指头来记数,当指头不敷应用时,人们开始采用“石头记数”“结绳记数”和...

数是怎样产生的 故事
首先,是结绳产生计数法,结一个结表示1 然后,伏羲氏发明了八卦计数法,采用二进制,即现在的计算机语言。如乾卦是三横,用二进制表示就是111,用十进制表示就是7,其他的七卦分别表示0、1、2、3、4、5、6 再后来,到周文王时,把八卦叠起来,组合成64个卦,就有了0—63共计64个数。最后,...

数字是怎么产生的?
”数字“起源于原始人类用来数数计数的记号形成自然数“数”的符号,是人类最伟大的发明之一,是人类精确描述事物的基础。在人类漫长的历史进程中,1、通过对现实事物数数这种方式得到了数;2、数可以使用一定的方式进行运算;3、数同空间事物相联系时,可表明这些事物的多少。(摘自自然数原本数数论)大...

数字是怎样产生的?
数字的起源有两种说法:1、数字起源于我国,史书上说中天皇君兄弟十三人,号曰天灵,其中一人发明了数字,继而又发明了天干、地支。发明数字:零、一、二、三、四、五、六、七、八、九、十、廿、卅、卌、百、千、万。2、亦有另一种说法,数字是发源于古印度,并不是阿拉伯人发明创造的。数字后来...

相似回答