知识点1:一元二次方程的基本概念
知识点2:直角坐标系与点的位置
知识点3:已知自变量的值求函数值
知识点4:基本函数的概念及性质
知识点5:数据的平均数中位数与众数
知识点6:特殊三角函数值
知识点7:圆的基本性质
1.半圆或直径所对的圆周角是直角.
2.任意一个三角形一定有一个外接圆.
3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.
4.在同圆或等圆中,相等的圆心角所对的弧相等.
5.同弧所对的圆周角等于圆心角的一半.
6.同圆或等圆的半径相等.
7.过三个点一定可以作一个圆.
8.长度相等的两条弧是等弧.
9.在同圆或等圆中,相等的圆心角所对的弧相等.
10.经过圆心平分弦的直径垂直于弦。
知识点8:直线与圆的位置关系
1.直线与圆有唯一公共点时,叫做直线与圆相切.
2.三角形的外接圆的圆心叫做三角形的外心.
3.弦切角等于所夹的弧所对的圆心角.
4.三角形的内切圆的圆心叫做三角形的内心.
5.垂直于半径的直线必为圆的切线.
6.过半径的外端点并且垂直于半径的直线是圆的切线.
7.垂直于半径的直线是圆的切线.
8.圆的切线垂直于过切点的半径.
知识点9:圆与圆的位置关系
1.两个圆有且只有一个公共点时,叫做这两个圆外切.
2.相交两圆的连心线垂直平分公共弦.
3.两个圆有两个公共点时,叫做这两个圆相交.
4.两个圆内切时,这两个圆的公切线只有一条.
5.相切两圆的连心线必过切点.
知识点10:正多边形基本性质
1.正六边形的中心角为60°.
2.矩形是正多边形.
3.正多边形都是轴对称图形.
4.正多边形都是中心对称图形.
知识点11:一元二次方程的解
知识点12:方程解的情况及换元法
知识点13:自变量的取值范围
知识点14:基本函数的概念
知识点15:圆的基本性质
知识点16:点、直线和圆的位置关系
知识点17:圆与圆的位置关系
知识点18:公切线问题
知识点19:正多边形和圆
知识点20:函数图像问题
知识点21:分式的化简与求值
知识点22:二次根式的化简与求值
知识点23:方程的根
知识点24:求点的坐标
知识点25:基本函数图像与性质
知识点26:正多边形问题
知识点27:科学记数法
知识点28:数据信息题
知识点29: 增长率问题
知识点30:圆中的角
知识点31:三角函数与解直角三角形
知识点32:圆中的线段
知识点33:数形结合解与函数有关的实际问题
知识点34:二次函数图像与系数的关系
知识点35:多项选择问题
1. 已知:如图,△ABC中,∠A=60º,BC为定长,以BC为直径的⊙
2. O分别交AB、AC于点D、E,连结DE、OE.下列结论:
①BC=2DE;②D点到OE的距离不变;③BD+CE=2DE;④OE为△ADE外接圆的切线.其中正确的结论是 .
A.①② B.③④ C.①②③ D.①②④
2.已知:如图,⊙O是△ABC的外接圆,AD⊥BC,CE⊥AB ,D、E分别为垂足,AD交CE于H点,交⊙O于N,OM⊥BC,M为垂足,BO延长交⊙O于F点,下列结论:其中正确的有 .
①∠BAO=∠CAH; ②DN=DH;
③四边形AHCF为平行四边形;④CH•EH=OM•HN.
A.①②③ B.②③④ C.①③④ D.①②③④
3.已知:如图,P为⊙O外一点,PA、PB切⊙O于A、B两点,OP交⊙O于点C,连结BO交延长分别交⊙O及切线PA于D、E两点,连结AD、BC.下列结论:①AD∥PO;②ΔADE∽ΔPCB;
③tan∠EAD= ;④BD2=2AD•OP.其中正确的有 .
A.①②④ B.③④ C.①③④ D.①④
4.已知:如图, PA、PB为⊙O的两条切线,A、B为切点,直线PO交⊙O于C、D两点,交AB于E,AF为⊙O的直径,连结EF、PF,下列结论:①∠ABP=∠AOP;②BC弧=DF弧 ;③PC•PD=PE•PO;④∠OFE=∠OPF.其中正确的有 .
A.①②③④ B.①②③ C.①③④ D.①②④
5.已知:如图,∠ACB=90º,以AC为直径的⊙O交AB于D点,过D作⊙O的切线交BC于E点,EF⊥AB于F点,连OE交DC于P,则下列结论:其中正确的有 .
①BC=2DE; ②OE∥AB;
③DE= PD; ④AC•DF=DE•CD.
A.①②③ B.①③④ C.①②④ D.①②③④
6.已知:如图,M为⊙O上的一点,⊙M与⊙O相交于A、B两点,P为⊙O上任意一点,直线PA、PB分别交⊙M于C、D两点,直线CD交⊙O于E、F两点,连结PE、PF、BC,下列结论:其中正确的有 .
①PE=PF; ②PE2=PA•PC; ③EA•EB=EC•ED;
④ (其中R、r分别为⊙O、⊙M的半径).
A.①②③ B.①②④ C.②④ D.①②③④
7.已知:如图,⊙O1、⊙O2相交于A、B两点,PA切⊙O1于A,交⊙O2于P,PB的延长线交⊙O1于C,CA的延长线交⊙O2于D,E为⊙O1上一点,AE=AC,EB延长线交⊙O2于F,连结AF、DF、PD,下列结论:
①PA=PD;②∠CAE=∠APD; ③DF∥AP;
④AF2=PB•EF.其中正确的有 .
A.①②③ B.②③④ C.①③④ D.①②③④
8.已知:如图,⊙O1、⊙O2内切于点A,P为两圆外公切线上的一点,⊙O2的割线PBC切⊙O1于D点,AD延长交⊙O2于E点,连结AB、AC、O1D、O2E,下列结论:①PA=PD;②BE弧=CE弧;③PD2=PB•PC;④O1D‖O2E.其中正确的有 .
A.①②④ B.②③④ C.①③④ D.①②③④
9.已知:如图, P为⊙O外一点,割线PBC过圆心O,交⊙O于B、C两点,PA切⊙O于A点,CD⊥PA,D为垂足,CD交⊙O于F,AE⊥BC于E,连结PF交⊙O于M,CM延长交PA于N,
下列结论:
①AB =AF;②FD弧=BE弧 ;③DF•DC=OE•PE;
④PN=AN.其中正确的有 .
A.①②③④ B.②③④ C.①③④ D. ①②④
10.已知:如图,⊙O1、⊙O2内切于点P, ⊙O1的弦AB切⊙O2于C点,PC的延长线交⊙O1于D点,PA、PB分别交⊙O2于E、F两点,
下列结论:其中正确的有 .
①CE=CF; ②△APC∽△CPF;
③PC•PD=PA•PB; ④DE为⊙O2的切线.
A.①②③ B.②③④
C.①③④ D.①②③④
知识点36:因式分解
1.分解因式:x2-x-4y2+2y= .
2.分解因式:x3-xy2+2xy-x= .
3.分解因式:x2-bx-a2+ab= .
4.分解因式:x2-4y2-3x+6y= .
5.分解因式:-x3-2x2-x+4xy2= .
6.分解因式:9a2-4b2-6a+1= .
7.分解因式:x2-ax-y2+ay= .
8.分解因式:x3-y3-x2y+xy2= .
9.分解因式:4a2-b2-4a+1= .
知识点37:找规律问题
1. 阳阳和明明玩上楼梯游戏,规定一步只能上一级或二级台阶,玩着玩着两人发现:当楼梯的台级数为一级、二级、三级、……逐步增加时,楼梯的上法依次为:1,2,3,5,8,13,21,……(这就是著名的斐波拉契数列).请你仔细观察这列数的规律后回答:上10级台阶共有 种上法.
2.把若干个棱长为a的立方体摆成如图形状:从上向下数,摆一层有1个立方体,摆二层共有4个立方体, 摆三层共有10个立方体,那么摆五层共有 个立方体.
3.下面由“*”拼出的一列形如正方形的图案,每条边上(包括两个顶点)有n(n>1)个“*”,每个图形“*”的总数是S:
n=2,S=4 n=3,S=8 n=4,S=12 n=5,S=16
通过观察规律可以推断出:当n=8时,S= .
4.下面由火柴杆拼出的一列图形中,第n个图形由n个正方形组成:
……
n=1 n=2 n=3 n=4 ……
通过观察发现:第n个图形中,火柴杆有 根.
5.已知P为△ABC的边BC上一点,△ABC的面积为a,
B1、C1分别为AB、AC的中点,则△PB1C1的面积为 ,
B2、C2分别为BB1、CC1的中点,则△PB2C2的面积为 ,
B3、C3分别为B1B2、C1C2的中点,则△PB3C3的面积为 ,
按此规律……可知:△PB5C5的面积为 .
6. 如图,用火柴棒按平行四边形、等腰梯形间隔方式搭图形. 按照这样的规律搭下去……
若图形中平行四边形、等腰梯形共11个,需要 根火柴棒.(平行四边形每边为一根火柴棒,等腰梯形上底,两腰为一根火柴棒,下底为两根火柴棒)
7.如图的三角形数组是我国古代数学家杨辉发现的,
称为杨辉三角形.根据图中的数构成的规律可得:
图中a所表示的数是 .
8. 在同一平面内:两条直线相交有 个交点,三条直线两两相交最多有 个交点,四条直线两两相交最多有 个交点,……
那么8条直线两两相交最多有 个交点.
9.观察下列等式:13+23=32;13+23+33=62;13+23+33+43=102……;
根据前面各式规律可得:13+23+33+43+53+63+73+83= .
知识点38:已知结论寻求条件问题
1. 如图, AC为⊙O的直径,PA是⊙O的切线,切点为A,PBC是⊙O的割线,∠BAC的平分线交BC于D点,PF交AC于F点,交AB于E点,要使AE=AF,则PF应满足的条件是 . (只需填一个条件)
2.已知:如图,AB为⊙O的直径,P为AB延长线上的一点,PC切⊙O于C,要使得AC=PC,
则图中的线段应满足的条件是 .
3.已知:如图,四边形ABCD内接于⊙O,过A作⊙O的切线交CB的延长线于P,若它的边满足条件 ,则有ΔABP∽ΔCDA.
4.已知: ΔABC中,D为BC上的一点,过A点的⊙O切BC于D点,交AB、AC于E、F两点,要使BC‖EF,
则AD必满足条件 .
5.已知:如图,AB为⊙O的直径,D为弧AC上一点,DE⊥AB于E,DE、DB分别交弦AC于F、G两点,要使得DE=DG,则图中的弧必满足的条件是 .
6.已知:如图,Rt△ABC中,以AB为直径作⊙O交BC 于D点,E为AC上一点,要使得AE=CE,请补充条件
(填入一个即可).
7.已知:如图,圆内接四边形ABCD,对角线ACBD相交于E点,要使得BC2=CE•CA,则四边形ABCD的边应满足的条件是 .
8.已知,ΔABC内接于⊙O,要使∠BAC的外角平分线与⊙O相切,则ΔABC的边必满足的条件是 .
9.已知: 如图,ΔABC内接于⊙O,D为劣弧AB上一点,E是BC延长线上一点,AE交⊙O于F,为使ΔADB∽ΔACE,应补充的一个条件是 ,或 .
10.已知:如图,以△ABC的边AB为直径作⊙O交BC于D,DE⊥AC,E为垂足,要使得DE为⊙O的切线,则△ABC的边必满足的条件是 .
知识点39:阴影部分面积问题
1. 如图,梯形ABCD中,AD∥BC,∠D=90°,以AB为直径的⊙
O切CD于E点,交BC于F,若AB=4cm,AD=1cm, 则图中阴影部分的面积是 cm2.(不用近似值)
2.已知:如图,平行四边形 ABCD,AB⊥AC,AE⊥BC,以AE为直径作⊙O,以A为圆心,AE为半径作弧交AB于F点,交AD于G点,若BE=2,CE=6,则图中阴
影部分的面积为 .
3.已知:如图, ⊙O1与⊙O2内含,直线O1O2分别交⊙O1和⊙O2于A、B和C、D点,⊙O1的弦BE切⊙O2于F点,若AC=1cm,CD=6cm,DB=3cm,则弧CF、AE与线段AC弧、EF弧围成的阴影部分的面积
是 cm2.
4.已知:如图,AB为⊙O 的直径,以AO、BO为直径作⊙O1、⊙O2,⊙O的弦 MN与⊙O1、⊙O2相切于C、D两点,AB=4,则图中阴影部分的面积是 .
5.已知:如图,等边△ABC内接于⊙O1,以AB为直径作⊙O2,AB=2 ,则图中阴影部分的面积为 .
6.已知:如图,边长为12的等边三角形,形内有4个等圆,则图中阴影部分的面积为 .
7.已知:如图,直角梯形ABCD中,AD∥BC,AD=AB=2 ,BC=4,∠A=90°,以A为圆心,AB为半径作扇形ABD,以BC为直径作半圆,则图中阴影部分的面积为 .
8.已知:如图, ABCD,AB⊥AC,AE⊥BC,以AE为直径作⊙O,以A为圆心,AE为半径作弧交AB于F点,交AD于G点,若BE=6,CE=2,则图中阴影部分的面积为 .
9.已知:如图,⊙O 的半径为1cm,AO交⊙O于C,AO=2cm,AB与⊙O相切于B点,弦CD‖AB,则图中阴影部分的面积是 .
10.已知:如图,以⊙O的半径OA为直径作⊙O1,O1B⊥OA交⊙O于B,OB交⊙O1于C,OA=4,则图中阴影部分的面积为
温馨提示:内容为网友见解,仅供参考