电力系统中性点直接接地和不直接接地系统中,当发生单相接地故障时各有什么特点?

如题所述

电力系统中性点运行方式主要分两类,即直接接地和不直接接地。直接接地系统供电可靠性相对较低。

这种系统中发生单相接地故障时,出现了除中性点外的另一个接地点,构成了短路回路,接地相电流很大,为了防止损坏设备,必须迅速切除接地相甚至三相。不直接接地系统供电可靠性相对较高,但对绝缘水平的要求也高。

因这种系统中发生单相接地故障时,不直接构成短路回路,接地相电流不大,不必立即切除接地相,但这时非接地相的对地电压却升高为相电压的1.7 倍。

扩展资料:

根据电力系统中装机容量与用电负荷的大小,以及电源点与负荷中心的相对位置,电力系统常采用不同电压等级输电(如高压输电或超高压输电),以求得最佳的技术经济效益

根据电流的特征,电力系统的输电方式还分为交流输电和直流输电。交流输电应用最广。直流输电是将交流发电机发出的电能经过整流后采用直流电传输。

发生单相接地故障后,由于要查找和消除故障,必然要停运发生单相接地故障配电线路,从而将造成长时间、大面积停电,减少供电量。据不完全统计,每年由于配电线路发生的单相接地故障,将少供电十几万度,影响供电企业的供电量指标和经济效益。

电压互感器高压侧出现一相(A相)断线或熔断件熔断,此时故障相的指示不为零,这是由于此相电压表在二次回路中经互感器线圈和其他两相电压表形成串联回路,出现比较小的电压指示,但不是该相实际电压,非故障相仍为相电压。互感器开口三角处会出现35V左右电压值,并启动继电器,发出接地信号。

参考资料来源:百度百科--电力系统

参考资料来源:百度百科--单相接地

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2018-05-20
电力系统中性点运行方式主要分两类,即直接接地和不直接接地。直接接地系统供电可靠性相对较低。这种系统中发生单相接地故障时,出现了除中性点外的另一个接地点,构成了短路回路,接地相电流很大,为了防止损坏设备,必须迅速切除接地相甚至三相。不直接接地系统供电可靠性相对较高,但对绝缘水平的要求也高。因这种系统中发生单相接地故障时,不直接构成短路回路,接地相电流不大,不必立即切除接地相,但这时非接地相的对地电压却升高为相电压的1.7 倍。本回答被提问者和网友采纳
第2个回答  2012-03-25
从理论上分析,当电气设备中性点采用不接地方式时,由于需考虑设备或系统线路在发生单相接地故障时接地点有较大电容电流流过(可能达到正常工作时单相 对地电容电流的3倍),产生强烈的、不能自行熄灭的电弧,损坏设备;而此时,中性点处对地电压升为相电压,非故障相电压升为线电压,因此,设备的中性点处 绝缘应按相电压绝缘考虑,设备各相的绝缘应按线电压绝缘考虑,设备制造的复杂性和成本因而增加。
  若设备的中性点采取直接接地方式,考虑设备或系统线路在发生单相接地故障时,中性点处对地电压仍为零,非故障相电压不会升高,仍为相电压;故设备的中 性点处绝缘和各相的绝缘仍按正常时情况考虑,不必升高,设备造价相对低一些。但此时故障点的电容电流很大,甚至可能超过三相短路时电流,造成故障点、设备 中性点构成的回路中流过的电流很大,引起事故并扩大;故线路上需加装断路器,在继电保护装置的配合下跳闸,及时将故障相切除,消缺后又自动重合闸。
第3个回答  2021-01-01

电力系统中性点直接接地和不直接接地系统中,当发生单相接地故障时各有...
电力系统中性点运行方式主要分两类,即直接接地和不直接接地。直接接地系统供电可靠性相对较低。这种系统中发生单相接地故障时,出现了除中性点外的另一个接地点,构成了短路回路,接地相电流很大,为了防止损坏设备,必须迅速切除接地相甚至三相。不直接接地系统供电可靠性相对较高,但对绝缘水平的要求也高。

电力系统中性点直接接地和不直接接地系统中,当发生单相接地故障时各有...
中性点直接接地:绝缘方面减少了投资,因为在发生单相接地时,中性点电压为零,非故障相电压不升高,设备和线路对地电压可以按照相电压设计,从而降低了造价,减少了投资。中性点不直接接地:电网发生单相接地故障时稳态工频电流小。在这种情况下:如雷击绝缘闪络瞬时故障可自动清除,无需跳闸; 如金属性接地...

电力系统中性点直接接地和不直接接地系统中,当发生单相接地故障时各有...
直接接地:单相电流大,故障相电压为0。非故障相电压不变,中性点电压为0。不直接接地:单相接地电流很小(电容电流),故障相电压为0,非故障相电压上升为线电压,中性点电压上升为相电压。

电力系统中性点直接接地和不直接接地系统中,当发生单相接地故障时...
中性点直接接地系统称为大电流接地系统,单相接地就是单相短路,短路电流较大,发生单相接地必须立即跳闸停电。中性点不直接接地(不接地或经过高阻抗元件接地系统)称为小电流接地系统,单相接地时不构成电流,故障点只有较小的分布电容电流,一般可以继续运行一定的时间。

分析中性点直接接地和不接地系统发生单相接地时故障情况及特点?
当电力系统发生单相接地故障时,两种常见系统——中性点直接接地与不接地系统,其故障特性与处理策略各有不同。在中性点直接接地系统中,一旦发生接地,电流迅速形成短路,可能导致设备损坏,因此保护装置需迅速响应。相比之下,中性点不接地系统中,故障相的电压变化显著,而非故障相的电容电流也随之增加,...

分析中性点直接接地和不接地系统发生单相接地时故障情况及特点?
中性点直接接地系统发生单相接地故障时,由于产生了除中性点外的另一接地点,故构成了短路回路,其接地电流很大甚至可能超过三相短路电流的数值,会损坏系统,所以保护装置必须立即动作。中性点不接地系统发生单相接地故障,故障相对电压为0,非故障相对地电压升高为线电压,即为原来的√3倍;而由于故障相发生...

...直接接地系统在发生单相接地故障时各有什么特点?
1 中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的...

当发生单相接地故障时各有什么特点?
电力系统中性点运行方式主要分为两类,直接接地与非直接接地。直接接地系统在供电可靠性上较低,发生单相接地故障时,形成了除中性点外的另一接地点,构成短路回路,接地相电流巨大。为了防止设备损坏,必须迅速切断接地相,甚至三相。相反,非直接接地系统的供电可靠性相对较高,但对绝缘水平的要求也相应...

中性点直接接地系统和不直接接地系统。发生单相短路接地,有什么...
中性点直接接地系统发生单相接地时,中性点电压为零,非故障相电压不升高,故障电流大。中性点不直接接地系统发生单相接地时,中性点电压最高为相电压,非故障相电压升高到线电压,故障电流较小。

电力系统中性点直接接地和不直接接地系统中,当发生单相接地故障时...
中性点直接接地以后,该电力系统的中性点电位就被固定在零电位上,即便发生单相接地故障,由于大地对于电荷的容量为无穷大,所以大地的电位(即中心点的电位)仍然为零,所以不故障相对地的相电压不会变动。三相交流电力系统中性点与大地之间的电气连接方式,称为电网中性点接地方式。中性点接地方式涉及电网的...

相似回答