第1个回答 2012-03-25
定义在x = a处的导数:f'(a) = lim(x-->a) [f'(x) - f'(a)]/(x - a)
y = x + 1/x
y'(x₀) = lim(x-->x₀) [(x + 1/x) - (x₀ + 1/x₀)]/(x - x₀)
= lim(x-->x₀) [(x² + 1)/x - (x₀² + 1)/x₀]/(x - x₀)
= lim(x-->x₀) [(x² + 1)x₀ - (x₀² + 1)x]/[xx₀(x - x₀)]
= lim(x-->x₀) (x₀x² + x₀ - xx₀² - x)/[xx₀(x - x₀)]
= lim(x-->x₀) [(x₀x - 1)x - (x₀x - 1)x₀]/[xx₀(x - x₀)]
= lim(x-->x₀) [(x₀x - 1)(x - x₀)]/[xx₀(x - x₀)]
= lim(x-->x₀) (x₀x - 1)/xx₀
= (x₀² - 1)/x₀²
= 1 - 1/x₀²本回答被提问者采纳