如何理解数学的基本思想

如题所述

数学的基本思想
1.转化与化归思想:是把那些待解决或难解决的问题化归到已有知识范围内可解问题的一种重要的基本数学思想.这种化归应是等价转化,即要求转化过程中的前因后果应是充分必要的,这样才能保证转化后所得结果仍为原题的结果. 高中数学中新知识的学习过程,就是一个在已有知识和新概念的基础上进行化归的过程.因此,化归思想在数学中无处不在. 化归思想在解题教学中的的运用可概括为:化未知为已知,化难为易,化繁为简.从而达到知识迁移使问题获得解决.但若化归不当也可能使问题的解决陷入困境.
2.逻辑划分思想(即分类与整合思想):是当数学对象的本质属性在局部上有不同点而又不便化归为单一本质属性的问题解决时,而根据其不同点选择适当的划分标准分类求解,并综合得出答案的一种基本数学思想.但要注意按划分标准所分各类间应满足互相排斥,不重复,不遗漏,最简洁的要求. 在解题教学中常用的划分标准有:按定义划分;按公式或定理的适用范围划分;按运算法则的适用条件范围划分;按函数性质划分;按图形的位置和形状的变化划分;按结论可能出现的不同情况划分等.需说明的是: 有些问题既可用分类思想求解又可运用化归思想或数形结合思想等将其转化到一个新的知识环境中去考虑,而避免分类求解.运用分类思想的关键是寻找引起分类的原因和找准划分标准.
3. 函数与方程思想(即联系思想或运动变化的思想):就是用运动和变化的观点去分析研究具体问题中的数量关系,抽象其数量特征,建立函数关系式,利用函数或方程有关知识解决问题的一种重要的基本数学思想.
4. 数形结合思想:将数学问题中抽象的数量关系表现为一定的几何图形的性质(或位置关系);或者把几何图形的性质(或位置关系)抽象为适当的数量关系,使抽象思维与形象思维结合起来,实现抽象的数量关系与直观的具体形象的联系和转化,从而使隐蔽的条件明朗化,是化难为易,探索解题思维途径的重要的基本数学思想.
5. 整体思想:处理数学问题的着眼点或在整体或在局部.它是从整体角度出发,分析条件与目标之间的结构关系,对应关系,相互联系及变化规律,从而找出最优解题途径的重要的数学思想.它是控制论,信息论,系统论中“整体—部分—整体”原则在数学中的体现.在解题中,为了便于掌握和运用整体思想,可将这一思想概括为:记住已知(用过哪些条件?还有哪些条件未用上?如何创造机会把未用上的条件用上?),想着目标(向着目标步步推理,必要时可利用图形标示出已知和求证);看联系,抓变化,或化归;或数形转换,寻求解答.一般来说,整体范围看得越大,解法可能越好.
在整体思想指导下,解题技巧只需记住已知,想着目标, 步步正确推理就够了.
中学数学中还有一些数学思想,如:
集合的思想;
补集思想;
归纳与递推思想;
对称思想;
逆反思想;
类比思想;
参变数思想
有限与无限的思想;
特殊与一般的思想。
它们大多是本文所述基本数学思想在一定知识环境中的具体体现.所以在中学数学中,只要掌握数学基础知识,把握代数,三角,立体几何,解析几何的每部分的知识点及联系,掌握几个常用的基本数学思想和将它们统一起来的整体思想,就定能找到解题途径.提高数学解题能力.

数学解题中转化与化归思想的应用

数学活动的实质就是思维的转化过程,在解题中,要不断改变解题方向,从不同角度,不同的侧面去探讨问题的解法,寻求最佳方法,在转化过程中,应遵循三个原则:
1、熟悉化原则,即将陌生的问题转化为熟悉的问题;
2、简单化原则,即将复杂问题转化为简单问题;
3、直观化原则,即将抽象总是具体化。

策略一:正向向逆向转化
一个命题的题设和结论是因果关系的辨证统一,解题时,如果从下面入手思维受阻,不妨从它的正面出发,逆向思维,往往会另有捷径。

策略二:局部向整体的转化
从局部入手,按部就班地分析问题,是常用思维方法,但对较复杂的数学问题却需要从总体上去把握事物,不纠缠细节,从系统中去分析问题,不单打独斗。

策略三:未知向已知转化
又称类比转化,它是一种培养知识迁移能力的重要学习方法,解题中,若能抓住题目中已知关键信息,锁定相似性,巧妙进行类比转换,答案就会应运而生。

逻辑划分思想
分类讨论的一般步骤:
(1)明确讨论对象及对象的范围P。(即对哪一个参数进行讨论);
(2)确定分类标准,将P进行合理分类,标准统一、不重不漏,不越级讨论。;
(3)逐类讨论,获取阶段性结果。(化整为零,各个击破);
(4)归纳小结,综合得出结论。(主元求并,副元分类作答)。
温馨提示:内容为网友见解,仅供参考
第1个回答  2012-05-08
按自己的理解来,,找合适自己的理解方式
第2个回答  2012-05-20
多做题,保持思路清晰,多总结,反思就会慢慢理解的。

什么是数学基本思想
数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地...

数学基本思想有哪些
1. 抽象思想:这是数学最基本的思想之一。数学的研究对象一般是抽象化的结果。在数学的早期阶段,人们通过实际操作,如计数等,逐渐形成了抽象的数学概念。这种从具体到抽象的过程,是数学发展的一个重要特征。抽象思想帮助数学家和数学学习者理解和处理复杂的数据和概念,将具体的、直观的、繁杂的事物抽象...

怎么理解数学的基本思想
数学的基本思想 1.转化与化归思想:是把那些待解决或难解决的问题化归到已有知识范围内可解问题的一种重要的基本数学思想.这种化归应是等价转化,即要求转化过程中的前因后果应是充分必要的,这样才能保证转化后所得结果仍为原题的结果. 高中数学中新知识的学习过程,就是一个在已有知识和新概念的基础上进...

数学的基本思想有哪些
数学的基本思想包括:抽象思想、推理思想、模型思想、数形结合思想。一、抽象思想 数学的本质是从具体事物中提取出数量关系和空间形式的本质属性,进行抽象研究的一门学科。抽象思想是数学的基本思想之一,它帮助我们从复杂的现象中抓住事物的本质和特征,比如通过数学对物质运动的概念进行抽象表达。在数学教学...

如何理解数学的基本思想?
关于数学的基本思想有哪些如下:数学抽象思想包含分类思想,集合思想,数形结合思想,符号表示思想,对称思想,对应思想,有限与无限思想等。数学推理思想包含归纳思想,演绎思想,公理化思想,转化思想,类比思想,逐步逼近思想,代换思想,特殊一般思想等。数学建模思想包含简化思想,量化思想,函数思想,方程思想...

数学基本思想方法有哪些
1、数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。2、转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的...

小学数学常用的数学基本思想
小学数学常用的数学基本思想有归纳、演绎、类比、分类等。1、归纳:归纳是通过特例的分析引出普遍的结论。在研究一般性问题时,先研究几个简单、个别的、特殊的情况,从中概括出一般的规律和性质,这种由部分到整体、由特殊到一般的推理被称为归纳。2、演绎:演绎与归纳相反,是从普遍性结论或一般性的前提...

初中数学最常用的基本数学思想是
初中数学最常用的基本数学思想是函数与方程思想、数形结合思想、换元法思想。一、函数与方程思想:函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过...

如何让学生在数学学习中获得数学的基本思想
(一)数学抽象基本思想的渗透 抽象,作为数学活动最基本的一种思维方法,体现于小学阶段的数学概念、原理的形成以及问题解决的过程之中。数学抽象基本思想的渗透,有利于学生数学眼光和意识的有效培养,逐步深化其抽象水平,提高其分析与解决问题的能力等。例如,对自然数的理解,小学生一般都是通过逐步抽象...

关于数学的基础知识,基本技能,基本思想,基本活动经验的理解
“基本思想”是我国数学教育一直以来都重视的,修订版课标更加强调诸如公理化推理(演绎、归纳 、类比)、转化 、数形结合 、模型思想等,力图将我国数学教育的优秀传动进一步发扬光大。“基本活动经验”的提出意味着数学教学重视过程,事实上,数学自身具有经验本性,一方面,正如康德所说:一切知识始于经验,...

相似回答