1、待定系数法
待定系数法顾名思义是一种求未知数的方法。将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。
然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。
2、伴随矩阵法
代数余子式求逆矩阵:如果矩阵A可逆,则
(|A|≠0,|A|为该矩阵对应的行列式的值)
3、初等变换法
方法是一般从左到右,一列一列处理先把第一个比较简单的(或小)的非零数交换到左上角(其实最后变换也行),用这个数把第一列其余的数消成零处理完第一列后,第一行与第一列就不用管,再用同样的方法处理第二列(不含第一行的数)
扩展资料
性质定理:
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6、两个可逆矩阵的乘积依然可逆。
7、矩阵可逆当且仅当它是满秩矩阵。
参考资料来源:百度百科-逆矩阵
线性代数中的逆矩阵是怎么求的?
2、伴随矩阵法 代数余子式求逆矩阵:如果矩阵A可逆,则 (|A|≠0,|A|为该矩阵对应的行列式的值)3、初等变换法 方法是一般从左到右,一列一列处理先把第一个比较简单的(或小)的非零数交换到左上角(其实最后变换也行),用这个数把第一列其余的数消成零处理完第一列后,第一行与第一列就...
线性代数矩阵的逆矩阵的求解方法?
第三种:SVD分解法 SingularValue Decomposition分解法也叫做奇异值分解,也是线性代数中十分重要的矩阵分解法,同样的能用来求解矩阵的逆矩阵。不同于LU分解中将矩阵A分解为下三角矩阵L与上三角矩阵U的乘积,SVD分解将矩阵A分解为三个矩阵的乘积,分别为:正交矩阵U、对角矩阵W以及正交矩阵V的转置矩阵V.第...
线性代数的矩阵的逆怎么求
求逆矩阵有两种方法: 一是用伴随矩阵, 二是用初等行变换 初等行变换法:(A,E)= 3 1 5 1 0 0 1 2 1 0 1 0 4 1 -6 0 0 1 r3-r1-r2, r1-3r2 0 -5 2 1 -3 0 1 2 1 0 1 0 0 -2 -12 -1 -1 1 r3*(-1\/2),0 -5 2 ...
逆矩阵怎么求?
套用公式即可:A^-1=(A*)\/|A|A*代表伴随矩阵,|A|代表矩阵行列式,A^-1代表逆矩阵。伴随矩阵:在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。逆矩阵...
逆矩阵的求法是什么?
这是线性代数矩阵变换的反序原则,和求矩阵的转置一样,需要把原来矩阵的顺序反过来。下面进行逆推证明:(1)进行证明转换。如果要求AB矩阵的逆矩阵,那么该逆矩阵需要与AB矩阵相乘等于单位矩阵E。(2)运算过程如图 (3)论述得证 矩阵运算与代数运算有着很大区别,在进行矩阵分配运算和平方运算时,矩阵...
逆矩阵怎么求
矩阵求逆,即求矩阵的逆矩阵。矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷。逆矩阵又是矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩B,使得:AB=BA=E。则我们称B是A的逆矩阵...
如何求逆矩阵
如何求逆矩阵,方法如下:1、待定系数法 待定系数法顾名思义是一种求未知数的方法。将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决...
逆矩阵的求法
矩阵求逆,即求矩阵的逆矩阵。矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷。逆矩阵又是矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩B,使得: AB=BA=E。则我们称B是A的逆...
求矩阵逆的方法
求矩阵逆的方法如下:矩阵的逆等于伴随矩阵除以矩阵的行列式;主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以 (-1)x+y;x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始;在线性代数中,一个方形矩阵的伴随矩阵是一...
线性代数题,怎么求逆矩阵
原理就是对[A|E]进行初等行变换,当左边的部分化成单位矩阵E时,右边的部分就是A的逆矩阵了。