计算二重积分:∫∫(D)ln(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=1及坐标轴所围的在第一象限内的闭区域

如题所述

∫∫_D ln(1 + x² + y²) dxdy
= ∫(0→π/2) dθ ∫(0→1) ln(1 + r²) · rdr
= [ln(2) - 1/2] · π/2
= (π/4)(2ln(2) - 1)
温馨提示:内容为网友见解,仅供参考
第1个回答  2012-05-29
极坐标
∫∫(D)ln(1+x²+y²)dxdy
=∫∫(D)rln(1+r²)drdθ
=∫[0→2π]dθ∫[0→1] rln(1+r²)dr
=2π∫[0→1] rln(1+r²)dr
=π∫[0→1] ln(1+r²)d(r²)
=πr²ln(1+r²)-2π∫[0→1] r³/(1+r²)dr
=πr²ln(1+r²)-2π∫[0→1] (r³+r-r)/(1+r²)dr
=πr²ln(1+r²)-2π∫[0→1] rdr+2π∫[0→1] r/(1+r²)dr
=πr²ln(1+r²)-πr²+π∫[0→1] 1/(1+r²)d(r²)
=πr²ln(1+r²)-πr²+πln(1+r²) |[0→1]
=πln2-π+πln2
=π(2ln2-1)

做错了,当作整圆做的了。 结果再除以4本回答被提问者采纳
相似回答