怎样用最简单的方法求1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9+1/10

1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9+1/10=

1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9+1/10 =(1/2+1/3+1/6)+(1/4+1/5+1/10)+1/7+1/8+1/9 =1+11/20+1/8+1/7+1/9 =1+27/40+1/9+1/7 =1+283/360+1/7 =1+2341/2520 =4861/2520
温馨提示:内容为网友见解,仅供参考
无其他回答

1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8+1\/9+1\/10
分母是2的倍数通分加一起,是3倍数的加一起,是5倍数的加一起,是7倍数的加一起.不要重复.接着相加.可以试一试.

数列计算 1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8+1\/9=?
1\/5+1\/6+1\/7+1\/8>1\/2 ……1\/[2^(k-1)+1]+1\/[2^(k-1)+2]+…+1\/2^k>[2^(k-1)](1\/2^k)=1\/2 对于任意一个正数a,把a分成有限个1\/2 必然能够找到k,使得 1+1\/2+1\/3+1\/4+ … +1\/2^k>a 所以n→∞时,1+1\/2+1\/3+1\/4+ … +1\/n→∞...

如何计算1+1\/2+1\/3+1\/4+1\/5+1
计算1+1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8+1\/9+1\/10的过程如下:首先,我们可以通过拆分求和的方法简化计算:= 1 + (1\/2 + 1\/3 + 1\/6) + (1\/4 + 1\/5 + 1\/10) + 1\/7 + 1\/8 + 1\/9 = 1 + 1 + (1\/2 + 1\/3 - 1\/6) + (1\/4 + 1\/5 + 1\/10)= 1 +...

1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8+1\/9+1\/10+...1\/100这道题怎样简算
他的方法很简单: 1 +1\/2+1\/3 +1\/4 + 1\/5+ 1\/6+1\/7+1\/8 +... 1\/2+1\/2+(1\/4+1\/4)+(1\/8+1\/8+1\/8+1\/8)+... 注意后一个级数每一项对应的分数都小于调和级数中每一项,而且后面级数的括号中的数值和都为1\/2,这样的1\/2有无穷多个,所以后一个级数是趋向无穷大的,...

1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8+1\/9+1\/10等于多少?
1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8+1\/9+1\/10 =(1\/2+1\/3+1\/6)+(1\/4+1\/5+1\/10)+1\/7+1\/8+1\/9 =1+11\/20+1\/8+1\/7+1\/9 =1+27\/40+1\/9+1\/7 =1+283\/360+1\/7 =1+2341\/2520 =4861\/2520

1+1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8+1\/9+1\/10。计算结果。
1+1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8+1\/9+1\/10 =1+(1\/2+1\/3+1\/6)+(1\/4+1\/5+1\/10)+1\/7+1\/8+1\/9 =1+1+11\/20+1\/8+1\/7+1\/9 =1+1+27\/40+1\/9+1\/7 =1+1+283\/360+1\/7 =1+1+2341\/2520 =1+4861\/2520 ≈2.92896 ...

小学数学1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8+1\/9+1\/10=?
= 4861\/2520 看到这里,我们就应该知道,角度、时间……这些用的六十进制,就是为了二等分、三等分、四等分、五等分、六等分、十等分……公倍数都是60,像你提问这样的题目,今后就可以采用60进制,算得方便一些。2、3、4、5、6、7、8、9、10,最小公倍数是7*8*9*5= 2520,你学会了吗?祝...

1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+...+1\/99+1\/100=?
答:假设它有一个极限(设为A)则有此式的前n项之和为A,也就是说{1\/2+···+1\/n=A 1\/2+···+1\/n+···=A 而1\/n以后的项之和要等于0,我们取1\/(n+1) +···+ 1\/2(n+1),共有(n+1)项,而且每一项都小于其前一项,故:1\/(n+1) +···+ 1\/2(n+1)<...

(1\/2+1\/3+1\/4+1\/5+1\/6+1\/7+1\/8+1\/9+1\/10+1\/11+1\/12+1\/13+1\/14+1\/15...
首先提取公因式,归纳一下,就可以化成1\/15*(1+2+...+14)+1\/14*(1+2+...+13)+...1\/3*(1+2)+1\/2 然后根据括号内可以用等差求和的方法每个单项式归纳为1\/n*n\/2*(n-1)=(n-1)\/2 所以将N分别取15到2 提取公因式1\/2 最后变成(1+3+4+...+14)\/2=52.5 ...

1\/2+1\/3+1\/4+1\/5+1\/6+1\/7=?
1\/2+1\/3+1\/4+1\/5+1\/6+1\/7 =(1\/2+1\/3+1\/6)+(1\/4+1\/5+1\/7)=1+(9\/20+1\/7)=1+(63\/140+20\/140)=1+83\/140 =1又83\/140

相似回答