1、数列收敛与存在极限的关系:
数列收敛则存在极限,这两个说法是等价的;
2、数列收敛与有界性的关系:
数列收敛则数列必然有界,但是反过来不一定成立!
例如:Xn=1,-1,1,-1,.....|Xn|<=1,是有界的,但是Xn不收敛。
设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。数列收敛<=>数列存在唯一极限。
设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。
扩展资料
收敛数列性质:
1、唯一性
如果数列Xn收敛,每个收敛的数列只有一个极限。
2、有界性
定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。
定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。
数列有界是数列收敛的必要条件,但不是充分条件。
数列收敛则存在极限,这两个说法是等价的;
数列收敛则数列必然有界,但是反过来不一定成立!例如:Xn=1,-1,1,-1,.....|Xn|<=1,是有界的,但是Xn不收敛。
设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。数列收敛<=>数列存在唯一极限。
设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。
扩展资料:
收敛数列与其子数列间的关系:
1、子数列也是收敛数列且极限为a恒有|Xn|<M
2、若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。
3、如果数列{xn}收敛于a,那么它的任一子数列也收敛于a。
本回答被网友采纳请问“存在极限”、“数列收敛”、“有界性”有什么关系?
1、数列收敛与存在极限的关系:数列收敛则存在极限,这两个说法是等价的;2、数列收敛与有界性的关系:数列收敛则数列必然有界,但是反过来不一定成立!例如:Xn=1,-1,1,-1,...|Xn|<=1,是有界的,但是Xn不收敛。设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N...
为何数列有界必然收敛,有界必然收敛?
1、数列收敛与存在极限的关系:数列收敛则存在极限,这两个说法是等价的。2、数列收敛与有界性的关系:数列收敛则数列必然有界,但是反过来不一定成立。如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分...
数列收敛和有界性
1、数列收敛与存在极限的关系:数列收敛则存在极限,这两个说法是等价的;2、数列收敛与有界性的关系:数列收敛则数列必然有界,但是反过来不一定成立!例如:Xn=1,-1,1,-1,...|Xn|<=1,是有界的,但是Xn不收敛。收敛数列与其子数列间的关系:1、子数列也是收敛数列且极限为a恒有|Xn|<M 2...
高数,数列收敛与有界与极限三者的关系?
综合:由上可以看出,数列收敛等价于数列存在极限;而数列有界和数列极限没有必然关系;作为拓展,这里可以告诉你:当数列存在单调性(在取值内只有单调递增或递减)且有界时,该数列收敛.上述定理可以用夹逼定理证明的.,10,收敛必有届、有届不一定收敛o,2,
极限存在的数列一定是收敛数列吗还有为什么收敛数列一定有界呢
收敛数列之所以必定有界,其原因在于收敛性暗示了数列元素在无穷远处的聚集趋势。具体来说,对于任意给定的正数q,存在N使得n>N时,|Xn-a|
高数:收敛,有界,有极限 之间的联系与区别到底是什么?
函数有界,但不一定收敛。比如函数y=sinx此类的三角函数是发散的。函数收敛,但不一定有界,比如函数y=1\/n,n为自然数,y=1\/n是无界的。函数极限存在,根据单调有界准则,函数必定收敛。函数极限存在,根据极限的有界性,函数必定有界。函数有界,但不一定存在极限;根据单调有界准则,函数极限应存在上界...
收敛、连续、有界的关系?
收敛必然有界,反之不一定;连续是说函数在某范围是一条不间断的曲线。与收敛、有界,没有必然关系。比如,数列是典型的不连续函数,但是,可以收敛、有界;y=sinx是典型的有界、处处收敛、连续的函数。令{an}为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意...
数列收敛 数列有极限 数列有界的区别的联系
数列收敛就是有极限,数列收敛于极限值 有界不一定收敛,如:1,-1,1,-1……但收敛一定有界 1,-1\/2,1\/4,-1\/8……这个数列就是收敛于0,他的极限是0
收敛,有界,有极限和无穷有什么关系
如数列:an=1+(1\/n)有界但不是无穷小 )涵数【自变量在同一变化范围内】:(在这一范围内)有极限则有界;有界且有单调性则有极限.(在某一范围内)若极限为0则在这一范围内为无穷小;反之成立.(在某一范围内)若是无穷小则在这范围内有界;在某一范围内若有界且单调则有极限但不一定是无穷小 ...
极限和有界的关系是什么?
若一个数列收敛,那么这个数列就是有界数列,若一个函数在某点处有极限,那么这个函数在这个点处的去心领域内有界,也就是说局部有界。1,有界不一定有极限,例如振荡函数(正弦函数)。2,函数极限存在一定是有界的,既有下界,也有上界。(利用“单调有界必有极限”的原理去证明数列(在N⇒...