怎样证明2的n次方+1(n为奇数)一定是3的倍数

如果有误,请提供例外算式。

2的1次方=2(不能被3整除) 2的3次方=8(不能被3整除) 2的5次方=32(不能被3整除) 2的7次方=128(不能被3整除) 结论:2的任意次方(包括奇次方)都不能被3整除。 因为2的任意次方都是由若干个因数“2”相乘而得的,其中没除“2”以外的任何因数,当然也不包括“3”这个因数。所以都不能被“3”整除。

倍数是一数学名词,是指一个数和一整数的乘积。

换句话说,针对两个数a和b,若存在一整数n使得b = na,则b是a的倍数,若a不为零,也就表示b/a为一整数,其除法可以整除,没有余数。2的倍数,也称为偶数。若a和b都是整数,b是a的倍数,则a是b的因数。倍数=因数乘以y。

若a和b都是整数,一整数c同时是a和b的倍数,则c称为a和b的公倍数,若c为满足上述条件的最小正整数,则称为最小公倍数。

温馨提示:内容为网友见解,仅供参考
第1个回答  2017-03-03
令n=2m+1 2^n+1=2^(2m+1)+1=[2^(2m+1)-2^(2m-1)]+[2^(2m-1)-2^(2m-3)]+[2^(2m-3)-2^(2m-5)]+...+(2^3-2)+(2+1)式中每项均是三的倍数,本回答被提问者采纳
第2个回答  2022-09-19
因为2^1+1=3
第3个回答  2019-07-26
用数学归纳法
①当n=1时,2^n+1=3是3的倍数,符合条件………………(a)
②假设n=k时,2^k+1是3的倍数,
可以设2^k+1=3t,即2^k=3t-1
那么当n=k+2时
2^(k+2)+1
=4*2^k+1
=4*(3t-1)+1
=12t-3
=3(4t-1)
也是3的倍数……………………(b)
整理一下(a)(b)
(a)当n=1时,2^n+1是3的倍数
(b)如果2^k+1是3的倍数,那么2^(k+2)+1也是3的倍数
所以n是奇数时,2^n+1是3的倍数

怎样证明2的n次方+1(n为奇数)一定是3的倍数
2的1次方=2(不能被3整除) 2的3次方=8(不能被3整除) 2的5次方=32(不能被3整除) 2的7次方=128(不能被3整除) 结论:2的任意次方(包括奇次方)都不能被3整除。 因为2的任意次方都是由若干个因数“2”相乘而得的,其中没除“2”以外的任何因数,当然也不包括“3”这个因数。所...

证明2的n次方+1这个式子:当n是奇数时,这个式子是3的整数倍。
证: 2^n+1 =2^(2k+1)+1=2*4^k+1 【k是自然数】2*4^k+1=2*(3+1)^k+1 ;而(3+1)^k被3除余数是1 所以2*(3+1)^k被3除余数是2 ;所以2*(3+1)^k+1能被3整除!所以命题得证!

n为正整数且奇数,证明2的n次方+1为3的倍数
比如从2^3+1=9出发 [2^(2n+1)+1]-[2^(2n-1)+1]=2^(2n+1)-2^(2n-1)=3*2^(2n+1)↑加了括号 会不会清楚点-m-用(2n+1)来表示奇数了所以 看起来有点烦 也就是说 至少是相邻的 其实是全部 符合2^(2n-1)+1 的整数被3除都 同余 9能被3整除嘛 其他也就都被3整...

2^29+1是质数还是合数
合数 2^n+1 只要n是大于等于3的整数且是奇数,那么2^n+1 就必定可以给3整除,3不是1和它本身,所以2^n+1 (n≥3,且是整数.奇数)是合数。 既是整数,又是奇数的29大于3,因此2^29+1是合数 (具体论证过程如下)2^0+1=22^1+1=32^2+1=52^3+1=9 9÷3=32^4+1=...

求使2的n次方+1能被3整除的一切自然数n
设2^n+1=3a,求得n=log_2(3a-1);由于n取自然数,且a必须为整数,所以a=1,3,11,43...,即n能取得自然数值为1,3,5,7,9...为自然数中连续的奇数

2的偶次方加2一定是3的倍数吗
2的偶数次方加2一定会是3的倍数。这是因为任何一个偶数次方的2都可以表示为2的(2n)次方,其中n是一个非负整数,2的(2n)次方是一个偶数,因为其可以写作2的偶数次方,同时3是奇数,所以2的(2n)次方+1一定是一个奇数,而任何奇数加上1都会得到一个偶数,所以2的(2n)次方+1+1一定是3...

"求使2的n次方加一能被3整除的一切自然数是什么”
n=2k+1,k=0,1,2,3...用不完全归纳法即可证明 假设k=k时成立 即3|2的【2k+1】次方+1 当k=k+1时 2的【2k+3】次方+1=4*(2的【2k+1】次方+1)-3 所以能被3整除

2的n次方+1是完全平方数,n=3,还可以是几
设2^n+1=m*m,m为正整数 所以得到:2^n=(m-1)*(m+1)所以m必须是奇数,设m=2k+1,k为正整数 所以2^n=4*k*(k+1)所以2^(n-2)=k(k+1)当k=1时,n=3 当k取其它正整数是由于k(k+1)必然含有一个奇数因子,但2^(n-2)不包含除1之外的奇数因子 所以k只能取1,也就是n只能...

数论中素数的一个证明题
当n不是2的乘幂是,它一定是个奇数,2^n+1可以表示为 2^(2m+1)+1 ,的形式,两个数的奇数次幂之和,可以分解因式.即2^(2m+1)+1=(2+1)(2^(2m)-2^(2m-1)+2^(2m-2)+2^(2m-3)+1^(2m)),即可以分解成两个都不为1的数的乘积,与原来是素数的假设矛盾....

高数问题 如图 x的n次方加1 如果n为奇数 按公式打开即可 那像我划红线...
一般来说,如果n为奇数,x^n + 1 = (x + 1) (x^(n-1) - x^(n-2) + ··· - x +1),这是一个典型的因式分解,是根据等比数列(-x)^(n-1)前n项和公式推来的 但其实同样的,对于偶数的n,x^n - 1 = (x + 1) (x^(n-1) - x^(n-2) + ··· + x -1),...

相似回答