你做的是这道题吗?
limx→0(tanx-sinx\/x^2ln(1+x))
见图片
lim(x→0)tanx-sinx\/ln(1+x^3) 利用等价无穷小求解?
lim(x→0)(tanx-sinx)\/ln(1+x^x^x),=lim(x→0)(tanx-sinx)\/x^3(这是0\/0型,运用洛必达法则)=lim(x→0)(sec^2x-cosx)\/(3x^2)=lim(x→0)(1-cos^3x)\/(3x^2*cos^2x)=lim(x→0)(1-cos^3x)\/(3x^2)(这是0\/0型,运用洛必达法则)=lim(x→0)(3cos^2xsinx)\/...
当x趋于0时,f(x)=tanx-sinx与g(x)=x^2ln(1-ax)是等价无穷小量,则a=-1...
回答:tanx -sinx =tanx-tanx·cosx=tanx(1-cosx)~x·(x² \/2)=x³\/2
lim(x>0)tanx-sinx\/ln(1-x2)极限
等于零
lim(x→0)tanx-sinx\/ln(1+x^3) 利用等价无穷小求解?
已知1 - cosx ~ x²\/2 tanx - sinx = tanx(1 - cosx) ~ x * x²\/2 = x³\/2 ln(1 + x³) ~ x³所以原式 = lim(x->0) (x³\/2)\/x³ = 1\/2
lim(arcsinx)ˣ-xˣ\/x²-ln²(1+x)
ln(1+x) = x + O(x^2)代入原式中得到:lim(x→0⁺)[1 - (1\/6)x^2 + O(x^4)]\/x^2ln^2(1+x)= lim(x→0⁺)[1\/x^2 - (1\/6) + O(x^2)]\/ln^2(1+x)使用洛必达法则,可以得到:lim(x→0⁺)1\/x^2 = +∞ lim(x→0⁺)ln^2(1+x...
求极限lim (tanx-x)\/(x^2ln(1+x)).,,x趋近0
2013-11-23 极限lim[x-x^2ln(1+1\/x)] 其中x趋向于正无... 54 2017-12-27 limx→0(tanx-sinx\/x^2ln(1+x)) 2016-11-30 求lim(x→0)[√(1+tanx)+√(1+sinx)]... 2 2018-01-06 求极限lim[x-x²ln(1+1\/x)],x趋向... 11 2014-11-22 高数极限题limx→0(tanx-x)\/[x...
lim(x→0)(arctanx- sinx)\/ x³
= (1\/6)lim(x→0) (- cosx + 4xsinx + x²cosx)\/(1 + 6x²)= (1\/6)(- 1 + 0)\/(1 + 0)= - 1\/6 在求极限中经常用到的等价无穷小有 x~sinx~arcsinx~tanx~arctanx~ln(1+x)~ex-1, 1-cosx~12x2, n1+x~1+xn,(x→0)等价无穷小概念是高等...
高数极限题limx→0(tanx-x)\/[xsinx^2+2ln(1+x)(1-cosx)]
用洛必达法则肯定是不科学的,所以想到用泰勒展开,分子加减sinx并拆分成两个极限相加的形式即可解题:
高数求极限 要详解 lim (ln tanx -ln x)\/(x^2) (x->0)
lim【x→0】(lntanx-lnx)\/(x^2)=lim【x→0】ln[(tanx)\/x]\/(x^2)=lim【x→0】ln[(sinx\/cosx)\/x]\/(x^2)=lim【x→0】ln(1\/cosx)\/(x^2)=lim【x→0】(1\/cosx-1)\/(x^2)=lim【x→0】(1-cosx)\/(cosx·x^2)=lim【x→0】[(x^2)...