已知函数f(x)=ln(x+1)+ax若存在x∈[1,2],使不等式f'(x)≥2x成立,求a范围

等差数列{An}的前n项和为Sn,已知A(m-1)+A(m+1)-A(m)²=0
S(2m-1)=38,(括号内的数位于下标)则m=()
设等比数列{An}的前n项和为Sn,若A1=1,S6=4*S3,则A4=()
设函数f(x)=3x^2+a/x^3(x∈(o,+∞))求正数a的取值范围,使对于任意x∈(0,+∞)都有f(x)>=20.
已知函数f(x)=(ax+1)×a的(-x)次幂,a>0且a≠1
(1) 讨论f(x)的单调性,并求出极值x0
(2)若(1)中的x0=g(a)在(1,e〕上的最小值

最后一体的题目看的不是特明白,不太清楚你写的啥

温馨提示:内容为网友见解,仅供参考
第1个回答  2011-02-14
Ralph Lauren has long been outfitting guys within the greatest outfits for 4 decades. The signature polo shirt has become the very best activity shirts combining the very best color mixtures and style whilst maintaining top quality via the toughest of sports. Sports is actually a way for many men and women to extend their mastery of physical fitness on the taking part in subject and while in the setting. Athletes can possess the self-assurance that Polo are long lasting,so the shirt stays tucked in while you play, manufactured of high quality materials which can be worn in the sport and stand up to the roughest of treatment method and enviroments. Snug,so the shirt stays tucked in when you play, however fashionable these shirts are created of woven cotton mesh that preserve via many washes and wear. Polo are designed which has a lengthier in back than in front,however fashionable these shirts are created of woven cotton mesh that preserve via many washes and wear. Polo are designed which has a lengthier in back than in front, so the shirt stays tucked in while you play,GIORGIO ARMANI, in addition to includes taping within the shirt, across the shoulders and along the neckline which provides the athlete reinforcement within the high-stress regions. Polo ralph lauren also have a knit-rib collar and cuffs which are created to resist the waviness that washings trigger a lot of other reduce good quality sports shirts. A lot of lesser quality shirts break down after repeated washings compared to Polo. Your polo will previous through one of the most extreme games plus a lifetime of washings and even now will search scorching on and off the field.本回答被网友采纳

已知函数f(x)=ln(x+1)+ax 若存在x∈[1,2],使不等式f'(x)≥2x成立,求a...
则a要小于y=-1\/(x+1)+2x在[1,2]上的最小值,而y=-1\/(x+1)+2x在[1,2]上是一个递增函数,所以a<3\/2,因此再反过来,满足题意的a的取值范围为a≥3\/2 第二小题:(若存在x∈[1,2],使不等式f'(x)≥2x成立,这个是整个题干不?)若是的话,ln(x+1)单调增,由第一小题a>...

已知函数f(x)=ln(x+1)+ax.(1)当x=0时,函数f(x)取得极大值,求实数a的值...
(1)f′(x)=1x+1+a由f′(0)=0,得a=-1,此时f′(x)=1x+1-1.当x∈(-1,0)时,f′(x)>0,函数f(x)在区间(-1,0)上单调递增;当x∈(0,+∞)时,f′(x)<0,函数f(x)在区间(0,+∞)上单调递减;∴函数f(x)在x=0处取得极大值,故a=-1.(...

已知函数f(x)=ln(x+1a)-ax,其中a∈R且a≠0.(1)讨论f(x)的单调性;(2...
a2xax+1,①当a<0时,f′(x)>0,函数f(x)在(?1a,+∞)上是增函数;②当a>0时,在区间(?1a,0)上,f′(x)>0;在区间(0,+∞)上,f′(x)<0,∴f(x)在区间(?1a,0)上是增函数,在(0,+∞)是减函数;(2)当a<0时,则x取适当的数能使f(x)≥a...

已知函数f(x)=lnx+ax+1,a∈R.(Ⅰ)求f(x)在x=1处的切线方程;(Ⅱ)若...
(Ⅰ)解:由f(x)=lnx+ax+1,得f′(x)=1x+a.∴f′(1)=1+a.又f(1)=a+1,∴f(x)在x=1处的切线方程为y-a-1=(1+a)(x-1),即y=(1+a)x;(Ⅱ)解:函数f(x)=lnx+ax+1的定义域为{x|x>0},由不等式f(x)≤0恒成立,得lnx+ax+1<0恒成立,即a...

已知函数f(x)=ln(1+x)+ax,(a∈R),(e=2.718281828…)(1)当a=-1时,求...
-1,0)时f'(x)>0;当x∈(0,+∞)时f'(x)<0∴当x=0时f极大值(x)=f(0)=0,无极小值,且函数f(x)的单调增区间为(-1,0),单调减区间为(0,+∞);(4分)(2)当x∈[e-1,2]时,不等式f(x)≥g(x)恒成立等价于ln(1+x)-(1-2a)x≥0即:1?

已知函数f(x)=ln(x+1)-ax(a∈R).(Ⅰ)若a=1,求证:当x>0时,f(x)<0...
解答:(Ⅰ)证明:∵a=1,∴f(x)=ln(x+1)-x,∴f′(x)=1x+1-1=?xx+1,∴当x>0时,f′(x)<0,f(x)在(0,+∞)上单调递减,∴f(x)<f(0)=0.(Ⅱ)解:∵f(x)=ln(x+1)-ax,∴f(x)的定义域为(-1,+∞),∴f′(x)=1x+1-a=(1?a)?

已知函数f(x)=ln(ax+1)+x²-ax(a>0) (1)若x=1\/2是函数f(x)的一个...
答案就是 ff'(x)=a\/(ax+1)+2x-a (1) f'(1\/2)=0 a=2 a=-1(舍)(2)f'(x)=a\/(ax+1)+2x-a=x(2ax+2-a^2)\/(ax+1),因为ax+1>0,所以a>根2时,(-1\/a,0)增,(0,(a^-2)\/2a)减,((a^2-2)\/2a,+∞)增;-1\/a<a<根2时,(a^2-2)\/2a<-1\/a<0...

设函数f(x)=ln(x+1)(1)若x>0证明:f(x)>2xx+2.(2)若不等式12x2≤f(x2...
则g′(x)=1x+1?2(x+2)?2x(x+2)2=x2(x+1)(x+2)2.∵x>0,∴g′(x)>0,∴g(x)在(0,+∞)上是增函数.故g(x)>g(0)=0,即f(x)>2xx+2.(2)原不等式等价于12x2?f(x2)≤m2?2bm?3.令h(x)=12x2?f(x2)=12x2?ln(1+x2),则h′(...

已知函数f(x)=xlnx+ax(a∈R)(I)当a=0,求f(x)的最小值;(II)若函数f(x...
f(x)的定义域为(0,+∞),f′(x)=lnx+1,令f′(x)=0,得:x=1e,当x∈(0,+∞)时,f'(x),f(x)的变化的情况如下: x (0,1e) 1e (1e,+∞) f'(x) - 0 + f(x) 单调递减 极小值 单调递增∴由表格可知:函数f(x)在区间(...

已知函数fx=ln(x+1)+kx^2(k∈R) (1)若函数y=fx在x=1处取得极大值,求k...
解:(1)。f '(x)=1\/(x+1)+2kx;f '(1)=1\/2+2k=0,故k=-1;f(x)=ln(x+1)-x²;(2)。由于f(0)=0,故要使f(x)=ln(x+1)+kx²图像上的点落在由x≥0和直线y-x≥0所限定的区域内(即在由y轴的正向与直线y=x所限定的区域),必须使f '(x)=1\/(x+1)+...

相似回答
大家正在搜