1\/1X2+1\/2X3+1\/3X4+1\/4X5+...+1\/2010X2011
将题目化为:1\/nx(n+1)=1\/n---1\/(n+1)带入式子得:中间的全消掉了,最后剩下的是1-1\/2011=2010\/2011!
数学:求
(1x2)分之1+(2x3)分之1+(3x4)分之1+(4x5)分之1+………+(2010x2011)分之1 =1\/1-1\/2+1\/2-1\/3+1\/3-1\/4+...+1\/2009-1\/2010+1\/2010-1\/2011 中间项都一正一负消去了 =1\/1-1\/2011 =2010\/2011
谁来帮我解决一下这道数学题?
答案是:2010\/2011。题目可以用代数表示:1\/n(n+1)=1\/n-1\/(n+1)所以题目式子可以化为:(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+……+(1\/n-1\/(n+1))=1-1\/(n+1),题目中的最后一项即2010项,将2010代入n,即1-1\/2011=2010\/2011 ...
数学题...设 S=1\/1^3+1\/2^3+1\/3^3+L+1\/2011^3,则4S的整数部分等于多少...
=1+1\/8+1\/27+1\/12 4S=4+1\/2+4\/27+1\/3<4+(1\/2+1\/6+1\/3)=5 S>1,4S>4 所以4<4S<5 4S的整数部分为4.
...1)+√(b-2)=0,求1\/ab+1\/(a+1)(b+1)+1\/(a+2)(b+2)+……+1\/(a+2009...
(b+n)=1\/(a+n)(b+n)所以 1/ab+1\/(a+1)(b+1)+1\/(a+2)(b+2)+……+1\/(a+2009)(b+2009)=1/ab+1\/(a+1)-1\/(b+1)+1\/(a+2)-1\/(b+2)+...+1\/(a+2009)-1\/(b+2009)=1\/2+1\/2-1\/3+1\/3-1\/4+...+1\/2010-1\/2011 =1-1\/2011 =2010\/2011 ...
4x\/1x2+4x\/2x3+4x\/4x5+4x\/5x6+...+4x\/2010x2011+4x\/2011x2012=1_百度...
4x(1\/1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+……+1\/2011-1\/2012)=1 4x(1-1\/2012)=1 4x(2011\/2012)=1 2011x\/503=1 x=503\/2011
初一数学计算题答案
1-1\/2平方=1\/2 X 3\/2 1-1\/3平方=2\/3 X 4\/3 1-1\/4平方=3\/4 X 5\/4(4的平方,所以分母就都是4,但是前面的分数,是3\/4,分子是分母-1,也就是4-1得到的,后面的5\/4,是4+1得到的)。。。所以1-1\/2010平方=2009\/2010 X 2011\/2010 然后,你上面的式子就转化成了都是乘法...