什么时候积分收敛,什么时候发散?
广义积分收敛判别口诀:积分后计算出来是定值,不是无穷大,就是收敛;积分后计算出来的不是定值,是无穷大,就是发散 。补充资料:反常积分又称广义积分,是普通定积分的推广。指上限\/下限无限的积分或有缺陷的被积函数。前者称为无限广义积分,后者称为瑕积分。因为面积是无限的,所以面积的值可能是无...
广义积分的敛散性判断
广义积分判断敛散性的方法是积分后计算出来是定值,不是无穷大,就是收敛;积分后计算出来的不是定值,是无穷大,就是发散 。广义积分判别法只要研究被积函数自身的性态,即可知其敛散性。
广义积分收敛判别法
广义积分又叫反常积分,广义积分判别法,避免了传统判别法需要寻找参照函数的困难。只要研究被积函数自身的性态,即可知其敛散性。一般来说不定积分问题出现在两个端点如果中间也有不连续值就只能将其分段研究通过研究在端点的敛散性就可以得到这个不定积分的敛散性具体方法要视具体题目不同来分开看。积分...
反常积分怎样判断收敛性?
反常积分判断敛散性的方法总结如下:1、第一类无穷限而言,当x→+∞时,f(x)必为无穷小,并且无穷小的阶次不能低于某一尺度,才能保证收敛。2、第二类无界函数而言,当x→a+时,f(x)必为无穷大。且无穷小的阶次不能高于某一尺度,才能保证收敛;这个尺度值一般等于1,注意识别反常积分。拓展知识...
反常积分的敛散性判别是什么意思?
反常积分的敛散性判别是是极限的存在性与无穷小或无穷大的比阶问题。两类反常积分的收敛尺度:对第一类无穷限 而言,当x趋近于正无穷时,f(x)必为无穷小,并且无穷小的阶次不能低于某一尺度,才能保证收敛;对第二类无界函数而言,当x趋近于a加时,f(x)必为无穷大。且无穷小的阶次不能高于某一...
高数问题 判断广义积分敛散性 如图为什么收敛?
这个实际上用到了比较审敛法,它实际上是跟被积函数为x²分之一的反常积分比较的。
反常积分的奇偶性怎样判断?
反常积分只有确定该积分收敛的情况下,才能利用奇偶性。f(x)=xe^|x|,是奇函数,但是在负无穷到正无穷上的积分不是0,是发散的。在一些实际问题中,常会遇到积分区间为无穷区间,或者被积函数为无界函数的积分,它们已经不属于一般意义上的定积分了,因此对定积分进行推广,从而形成了反常积分的概念。...
判断反常积分收敛 要过程
分部积分法求出原函数 上下限的值都存在 则这个广义积分收敛 过程如下:
如何判断∫1\/ lnxdx的敛散性?
反常积分)的审敛法,这种方法较少运用。对于无界函数广义积分,∫(a~b)f(x)dx(x=a为奇点,即瑕点),则作出(x-a)^p(0<p<1),求lim(x→a)(x-a)^pf(x),若极限存在则收敛。由此,此题中x=0为瑕点(奇点)所以lim(x→0)(x^p)\/lnx=0,(0<p<1)所以该广义积分收敛。
广义积分的敛散性
=0-1\/(-k+1)*(ln2)^(-k+1)=[(ln2)^(1-k)]\/(k-1)即当k1时收敛。问题二:这个题怎么做,关于高数的。 反常积分(后面的截图),当k为何值时,该反常积分的取值最小? 答:作不定积分:∫dx\/(x(lnx)^k)当k=1时,上式=ln(lnx)+C发散 当k≠1时,不定积分则 =1\/(-k+...