小学数学计算1/1*3*5+1/3*5*7+1/5*7*9+........

如题所述

原式=1/4×[1/(1×3)-1/(3×5)+1/(3×5)-1/(5×7)+……]
=1/4×[1/(1×3)](因为越来越接近0,所以我没有计算)
=1/4×1/3
=1/12(注:分母4是(5-1),(7-3)……)
温馨提示:内容为网友见解,仅供参考
第1个回答  2011-06-30
设第n个数为1/(n+2)*n*(n+4)
则1/(n+2)*n*(n+4=1/4*{1/n*(n+2)-1/(n+4)*(n+2)}
那两项可以消
剩下的自己做吧,做的太多自己的训练效果不好啦!
第2个回答  2011-07-02
1/4×﹙1/1×3-1/3×5+1/3×5-1/5×7+······)最后的结果要看末项是多少
第3个回答  2011-07-08
1/(n+2)*n*(n+4)
则1/(n+2)*n*(n+4=1/4*{1/n*(n+2)-1/(n+4)*(n+2)}
那两项可以消
第4个回答  2011-07-11
=15+35/3+63/5
=15+175/15+189/15
=15+364/15
=589/15

简便计算1\/1*3*5+1\/3*5*7+1\/5*7*9+1\/7*9*11+1\/9*11*13+1\/11*13*15...
您好!分析:1\/1×3×5=1\/4×(1\/1×3 -1\/3×5)1\/3×5×7=1\/4×(1\/3×5 -1\/5×7)1\/5×7×9=1\/4×(1\/5×7 - 1\/7×9)1\/7×9×11=1\/4×(1\/7×9 -1\/9×11)...1\/11×13×15=1\/4×(1\/11×13 -1\/13×15)所有的等式相加有 1\/1×3×5+1\/3×5×7+1\/...

计算1\/1*3*5+1\/3*5*7+1\/5*7*9+.+1\/2003*2005*2007=多少
1\/1*3*5=(1\/1*3-1\/3*5)\/41\/3*5*7=(1\/3*5-1\/5*7)\/41\/5*7*9=(1\/5*7-1\/7*9)\/4...1\/2003*2005*2007=(1\/2003*2005-1\/2005*2007)\/4全加起来你那个东西就等于(1\/1*3-1\/2005*2007)\/4=335336\/4024035

1\/1×3×5+1\/3×5×7+1\/5×7×9×+……+1\/2001×2003×2005
则原式=(1\\4)×(1\\(1×3)-1\\(3×5)+1\\(3×5)-1\\(5×7)+1\\(7×9)-……+1\\(2001×2003)-1\\(2003×2005))=(1\\4)×(1\\(1×3)-1\\(2003×2005))=(1\\4)×((4016015-3)\\12048045)=1004003\\12048045(结果你自己再算算吧,方法肯定对)...

1\/1×3×5+1\/3×5×7+1\/5×7×9+···+1\/2001×2003×2005等于多少...
=1\/12-1\/(4×2003×2005)。公式:(∑是求和的记号)∑1\/(2n-1)(2n+1)(2n+3)=1\/4 - 1\/[4(2n+1)(2n+3)] .

1\/1×3+1\/3×5+1\/5×7+1\/7×9+1\/9×11 = 多少?? 过程也写详细一点不要...
因为1\/1×3=1\/1-1\/3,所以以此类推,1\/(n-2)-1\/n=1\/(nx(n-2)),所以可得 1\/1×3+1\/3×5+1\/5×7+1\/7×9+1\/9×11 =1\/1-1\/3+1\/3-1\/5+1\/5-1\/7+1\/7-1\/9+1\/9-1\/11=1\/1-1\/11=10\/11

1\/1*3+1\/3*5+1\/5*7+1\/7*9+19*11+...+1\/1995*1997+1\/1997*1999的简便算 ...
观察数字,你会发现这样的规律:1\/1*3=(1-1\/3)*0.5 1\/3*5=(1\/3-1\/5)*0.5 1\/5*7=(1\/5-1\/9)*0.5 1\/7*9=(1\/7-1\/9)*0.5 ...那么1\/1*3+1\/3*5+1\/5*7+1\/7*9+19*11+...+1\/1995*1997+1\/1997*1999 =((1-1\/3)+(1\/3-1\/5)+(1\/5-1\/9...

数学题1\/1*3+1\/3*5+1\/5*7+...1\/97*99+1\/99*101=?谢谢!
所以1\/3+1\/3*5+1\/5*7...1\/99*101 =[(1-1\/3)+(1\/3-1\/5)+...+(1\/99-1\/101)]\/2 =(1-1\/101)\/2 =50\/101 性质1 等式两边同时加上(或减去)同一个整式,等式仍然成立。若a=b 那么a+c=b+c 性质2 等式两边同时乘或除以同一个不为0的整式,等式仍然成立。若a=b 那么有a...

1\/1*3+1\/3*5+1\/5*7+1\/7*9+1\/9*11的简便运算
解:令 1\/1*3+1\/3*5+1\/5*7+1\/7*9+1\/9*11=S 则 2S=2\/1*3+2\/3*5+2\/5*7+2\/7*9+1\/9*11 =(1-1\/3)+(1\/3-1\/5)+(1\/5-1\/7)+(1\/7-1\/9)+(1\/9-1\/11)=1-1\/3+1\/3-1\/5+1\/5-1\/7+1\/7-1\/9+1\/9-1\/11 =1-1\/11 =10\/11 即原式=S=10...

简便运算:1\/1*3+1\/3*5+1\/5*7+1\/7*9+1\/9*11
1\/1*3+1\/3*5+1\/5*7+1\/7*9+1\/9*11 =1\/2*(1-1\/3+1\/3-1\/5+1\/5-1\/7+1\/7-1\/9+1\/9-1\/11)=1\/2*(1-1\/11)=1\/2*10\/11 =5\/11

简便运算:1\/1*3+1\/3*5+1\/5*7+1\/7*9+1\/9*11
1\/1*3+1\/3*5+1\/5*7+1\/7*9+1\/9*11 =1\/2*(1-1\/3+1\/3-1\/5+1\/5-1\/7+1\/7-1\/9+1\/9-1\/11)=1\/2*(1-1\/11)=1\/2*10\/11 =5\/11

相似回答
大家正在搜