1\/2+5\/6+11\/12+19\/20+29\/30+...+ 9701\/9702+9899\/
99\/100
1\/2+5\/6+11\/12+19\/20+29\/30+...+9701\/9702+9899\/9900
29\/30=1-1\/30 第一项分母2=1*2 第二项分母6=2*3 最后一项分母9900=99*100 所以总共由99项 所以原题=99-(1\/2+1\/6+1\/12+1\/20+1\/30+……+1\/9900 )而 1\/2+1\/6+1\/12+1\/20+1\/30+……+1\/9900 =1-1\/2+1\/2-1\/3+1\/4-1\/5+1\/5-1\/6+……+1\/99-1\/100 =1-1\/...
1\/2+5\/6+11\/12+19\/20+29\/30+...+9701\/9702+9899\/9900的简便运算还有为什 ...
1\/2+5\/6+11\/12+19\/20+29\/30+...+9701\/9702+9899\/9900 =(1-1\/1*1\/2)+(1-1\/2*1\/3)+(1-1\/3*1\/4)+(1-1\/4*1\/5)+...+(1-1\/98*1\/99)+(1-1\/99*1\/100)=99-(1-1\/2+1\/2-1\/3+1\/3-1\/4+...+1\/98-1\/99+1\/99-1\/100)=99-(1-1\/100)=99-99\/100 =...
1\/2+5\/6+11\/12+19\/20+29\/30+…+9701\/9702+9899\/9900=?
1\/2+5\/6+11\/12+19\/20+29\/30+…+9701\/9702+9899\/9900 =(1-1\/2)+(1-1\/6)+(1-1\/12)+(1-1\/20)+(1-1\/30)+...+(1-1\/9702)+(1-1\/9900)=(1+1+1+1+1+...+1+1)-(1\/1*2+1\/2*3+1\/3*4+1\/4*5+1\/5*6+...+1\/98*99+1\/99*100)=99-(2\/2-1\/2+1\/2...
1\/2+5\/6+11\/12+19\/20+29\/30+…+9701\/9702+9899\/9900=?
]所以,原式=[1-(1\/1×2)]+[1-(1\/2×3)]+……+[1-(1\/99×100)]=1×99-[1\/(1×2)+(1\/2×3)+……+(1\/99×100)]=99-[1-(1\/2)+(1\/2)-(1\/3)+……+(1\/99)-(1\/100)]=99-[1-(1\/100)]=99-(99\/100)=99×[1-(1\/100)]=99×99\/100 =9801\/100 ...
1\/2+5\/6+11\/12+19\/20+29\/30=
1\/2+5\/6+11\/12+19\/20+29\/30 =(1-1\/2)+(1-1\/6)+(1-1\/12)+(1-1\/20)+(1-1\/30)=[1-(1-1\/2)]+[1-(1\/2-1\/3)]+[1-(1\/3-1\/4)]+[1-(1\/4-1\/5)]+[1-(1\/5-1\/6)]=1-1+1\/2+1-1\/2+1\/3+1-1\/3+1\/4+1-1\/4+1\/5+1-1\/5+1\/6 =4+1\/6 =4...
用递等式计算:1\/2+5\/6+11\/12+19\/20+29\/30+,9701\/9702+9899\/9900的和
=1\/(1×2)+5\/(2×3)+11\/(3×4)+19\/(4×5)+29\/(5×6)+……+9899\/(99×100)………=1\/(1×2)+(4+1)\/(2×3)+(9+2)\/(3×4)+(16+3)\/(4×5)+(25+4)\/(5×6)+……+(9801+98)\/(99×100)………=(1^2+0)\/(1×2)+(2^2+1)\/(2×3)+(3^2+2)\/(3...
...5+12分之11+20分之19+30分之29+42分之41+...9702分之9701+9900分之...
设项数为n n(n+1)=9900 (n-100)(n+99)=0 n1=100 n2=-99 (不合题意舍去)2分之1+6分之5+12分之11+20分之19+30分之29+42分之41+...9702分之9701+9900分之9899 =1-1\/2+1-1\/6+1-1\/12+...+1-1\/9900 =1X100-(1\/2+1\/6+1\/12+...+1\/9900)=100-(1-1\/2+...
1\/2+5\/6+11\/12+19\/20+29\/30要简便运算,
1\/2+5\/6+11\/12+19\/20+29\/30 =1-1\/2+1-1\/6+1-1\/12+1-1\/20+1-1\/30 =5-﹙1\/2+1\/6+1\/12+1\/20+1\/30﹚=5-﹙1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+1\/5-1\/6﹚=5-5\/6 =4又1\/6.
1\/2+5\/6+11\/12+19\/20+29\/30= +29\/30=
1\/2+1\/6+1\/12+1\/20+1\/30 =1\/2+(1\/2-1\/3)+(1\/3-1\/4)+(1\/4-1\/5)+(1\/5-1\/6)=1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+1\/5-1\/6 =1-1\/6 =5\/6 1\/2+5\/6+11\/12+19\/20+29\/30 =(1-1\/2)+(1-1\/6)+(1-1\/12)+(1-1\/20)+(1-1\/30)=5...