目前的数学思想方法一共有几种?

如题所述

四种。其中的具体情况如下:

1

数形结合的思想:

这是我们学习数学最先接触的思想方法。数形结合,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。

2

分类讨论的思想:在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性。

3

函数与方程思想:

函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。

4

转化与化归思想:

等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。

温馨提示:内容为网友见解,仅供参考
第1个回答  2022-04-02
总共有十一种。数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓

目前的数学思想方法一共有几种?
四种。其中的具体情况如下:1 数形结合的思想:这是我们学习数学最先接触的思想方法。数形结合,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是...

数学的思想方法有哪几种?
1、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。2、假设思想方法 假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适...

数学思想方法有哪几种?
1、数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。2、转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的...

数学中常用的思想方法有几种?
一、常用的数学思想(数学中的四大思想)1.函数与方程的思想 用变量和函数来思考问题的方法就是函数思想,函数思想是函数概念、图象和性质等知识更高层次的提炼和概括,是在知识和方法反复学习中抽象出的带有观念的指导方法。深刻理解函数的图象和性质是应用函数思想解题的基础,运用方程思想解题可归纳为三...

数学思想方法有哪几种?
数形结合思想 数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合。 1.数形结合与数形转化的目的是为了...

数学的思想有哪些?
数学 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明...

...数学思想包括获胜的条件田忌出马顺序一共有几种?
共有6种。田忌赛马中,假设齐威王出马的顺序是上等马、中等马、下等马,那么田忌共有以下几种出马的对策:上中下、上下中、中上下、中下上、下上中、下中上。六种策略里,唯有第五种出马方式,田忌可以获胜2场,也是所有策略中仅有的获胜机会。两千多年前的战国时期,齐威王与大将田忌赛马,双方约定...

创建于20 世纪的主要数学分支有哪些?请阐述它们各自的主要思想方法!
的方法.虽然这个课题源于十九世纪,但真正起步却是在二十世纪,作为一种能够将许多不同问题归并于其中来研究的统一性框架,李群理论深深地影响了二十世纪.我现在来谈谈Klein思想在几何方面的重要性.对于Klein而言,几何就是齐性空间,在那里,物体可以随意移动而保持形状不变,因此,它们是由一个相关的对称群来控制的.Euclid...

成都理工大学的信息管理学院的专业有哪几种?它们各自的课程有什么?
(1)有责任感;具有敬业爱岗、艰苦求实、热爱劳动、遵纪守法、团结合作的品质;具有良好的思想品德、社会公德和职业道德。 (2)学习经济学、管理学、数学分析方法、信息资源管理、信息系统方面的基本知识;受到系统和设计方法及信息管理方法的基本训练;具备有综合运用所学知识分析和解决问题的基本能力,有一定的设计、管理工商...

相似回答