解方程:1/(x-1)(x+1)+1/(x+1)(x+3)+1/(x+3)(x+5)=1

第8题的(2)问

拆项法,1/(x-1)(x+1)=0.5[1/(x-1)-1/(x+1)]
1/(x+1)(x+3)=0.5[1/(x+1)-1/(x+3)]
1/(x+3)(x+5)=0.5[1/(x+3)-1/(x+5)]
所以方程化为:0.5[1/(x-1)-1/(x+5)]=1
3/(x-1)(x+5)=1
x^2+4x-5=3
x^2+4x-8=0
x=-2±2√3
温馨提示:内容为网友见解,仅供参考
无其他回答

解方程:1\/(x-1)(x+1)+1\/(x+1)(x+3)+1\/(x+3)(x+5)=1
1\/(x+3)(x+5)=0.5[1\/(x+3)-1\/(x+5)]所以方程化为:0.5[1\/(x-1)-1\/(x+5)]=1 3\/(x-1)(x+5)=1 x^2+4x-5=3 x^2+4x-8=0 x=-2±2√3

解方程:1\/(x+1)(x+2)+1\/(x+3)(x+4)+……+1\/(x+2010)(x+2011)=(2x+401...
∵1\/(x+1)(x+2)=1\/(x+1)-1\/(x+2)∴1\/(x+1)(x+2)+1\/(x+3)(x+4)+……+1\/(x+2010)(x+2011)=1\/(x+1)-1\/(x+2)+1\/(x+3)-1\/(x+4)+...+1\/(x+2010)-1\/(x+2011)=1\/(x+1)-1\/(x+2011)=(2x+4019)\/(3x+6033)∴1\/(x+1)=(2x+4019)\/(3x+6033...

解分式方程1\/(x+1)(x+2)+1\/(x+2)(x+3)+1\/(x+3)(x+4)+1\/(x+4)(x+5...
将1\/(x+1)(x+2)拆开以此类推1\/(x +2)-1\/(x +1)就行了,剩下的也是这样

解分式方程:(x+1)(x+3)分之1+(x+3)(x+5)分之1-[2(x+1)]分之1=1
裂项得:1\/(x+1) -1\/(x+3) +1\/(x+3)-1\/(x+5)-1\/(x+1)=2 所以:-1\/(x+5)=2 所以:x+5=-1\/2 解得:x=-5.5 经检验,x=-5.5是原分式方程的根

解一元一次方程:(1)1\/3(x+1)+1\/4(x+2)+1\/5(x+3)=4-1\/6(x+4)
去分母,得 20(x+1)+15(x+2)+12(x+3)=240-10(x+4)去括号,得 20x+20+15x+30+12x+36=240-10x-40 移项,得 20x+15x+12x+10x=240-40-20-30 合并同类项,得 57x=114 系数化1得 x=2

解方程1\/x(x-1) +1\/x(x+1) +1\/(x+1)(x+2)=1
1\/x(x-1) +1\/x(x+1) +1\/(x+1)(x+2)=1 1\/(x-1) -1\/x+1\/x-1\/(x+1) +1\/(x+1)-1\/(x+2)=1 1\/(x-1)-1\/(x+2)=1 (x-1)(x+2)=3 x²+x-6=0 (x+3)(x-2)=0 x=-3 x=2

解一元一次方程:(1)1\/3(x+1)+1\/4(x+2)+1\/5(x+3)=4-1\/6(x+4)
解:去分母,得 20(x+1)+15(x+2)+12(x+3)=240-10(x+4)去括号,得 20x+20+15x+30+12x+36=240-10x-40 移项,得 20x+15x+12x+10x=240-40-20-30 合并同类项,得 57x=114 系数化1得 x=2

解分式方程1\/x(x-1) + 1\/x(x+1) +1\/(x+1)(x+2) +``` +1\/(x+9)(x+1...
1\/x(x-n)={1\/x - 1\/(x-n)}\/n...所以该方程化简后得1\/x - 1\/(x+10)=11\/12...结果你自己算吧,是两个答案没错呢~

解方程:1\/x(x+1)+1\/(x+1)(x+2)+1\/(x+2)(x+3)+...+1\/(x+9)(x+10)=5...
1\/x(x+1)+1\/(x+1)(x+2)+1\/(x+2)(x+3)+...+1\/(x+9)(x+10)=5\/12 1\/x-1\/(x+1)+1\/(x+1)-1\/(x+2)+1\/(x+2)-1\/(x+3)+...+1\/(x+9)-1\/(x+10)=5\/12 1\/x-1\/(x+10)=5\/12 10\/x(x+10)=5\/12 所以x²+10x-24=0 (x+12)(x-2)=0 x=...

1\/x(x+1)+1\/(x+1)(x+2)+...+1\/(x+9)(x+10)=1\/(x+10),解方程
1\/x(x+1)+1\/(x+1)(x+2)+...+1\/(x+9)(x+10)=1\/(x+10),1\/x(x+1)+1\/(x+1)(x+2)+...+1\/(x+9)(x+10)=1\/x-1\/(x+1)+1\/(x+1)-1\/(x+2)+...+1\/(x+9)-1\/(x+10)=1\/x-1\/(x+10)=1\/(x+10)1\/x=2\/(x+10)2x=x+10 x=10 检验符合 ...

相似回答
大家正在搜