主析取范式:(非p∧非q)∨(p∧q)∨(p∧非q)
主合取范式:p∨非q
先利用a→b<=>非a∨b求得主析取范式,再利用布尔析取(大项)和布尔合取(小项)求主合取范式
命题公式为真对应的极小项的析取就是主析取范式。
对于命题公式A为真的命题变元指派来说,这组成真指派一定对应一个成真的极小项,现在把这些所有成真的极小项并在一起组成的公式B,就是A的主析取范式。
证明:A等价于B
对于A为真的一组成真指派来说,该组指派一定含有成真的极小项,和其他成假的极小项。
把这些所有的极小项做析取,无论A为真的哪组指派,都必然有一个极小项为真,其他极小项为假。析取得到A必然为真。
如果A为假,在所有的极小项里,必然不包括成真的极小项,那么析取得到B也为假。