1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6。解题过程如下:
解:因为(n+1)^3=n^3+3n^2+3n+1
则(n+1)^3-n^3=3n^2+3n+1
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
............
3^3-2^3=3*2^3+3*2+1
2^3-1^3=3*1^3+3*1+1
把等式两边同时求和得,
(n+1)^3-1^3
=(3n^2+3(n-1)^2+......+3*2^2+3*1^2)+(3n+3(n-1)+......+3*2+3*1)+n
=3(n^2+(n-1)^2+......+2^2+1^2)+3(n+(n-1)+......+2+1)+n
=3(n^2+(n-1)^2+......+2^2+1^2)+3*n(n+1)/2+n
即,n^3+3n^2+3n=3(n^2+(n-1)^2+......+2^2+1^2)+3*n(n+1)/2+n
整理得,n^2+(n-1)^2+......+2^2+1^2=n(n+1)(2n+1)/6
即,1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
扩展资料:
数列求和的方法
1、公式法
(1)等差数列求和公式:Sn=1/2*n(a1+an)=d/2*n+(a1-d/2)*n
(2)等比数列求和公式:Sn=na1(q=1)、Sn=a1*(1-q^n)/(1-q)(q≠1)
(3)自然数求和公式:(1+2+3+...+n)=n(n+1)/2
2、错位相减法
3、倒序相加法
4、分组法
5、裂项相消法
(1)1/(n*(n+1))=1/n-1/(n+1)
(2)1/((2n-1)*(2n+1))=1/2(1/(2n-1)-1/(2n+1))
参考资料来源:百度百科-数列求和
参考资料来源:百度百科-平方和公式
1^2+2^2+3^2+...n^2怎么算,过程
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)\/6。解题过程如下:解:因为(n+1)^3=n^3+3n^2+3n+1 则(n+1)^3-n^3=3n^2+3n+1 n^3-(n-1)^3=3(n-1)^2+3(n-1)+1 ...3^3-2^3=3*2^3+3*2+1 2^3-1^3=3*1^3+3*1+1 把等式两边同时求和得,(n+1...
1的平方加2的平方...一直加到n的平方和是多少?有公式吗?
1^2+2^2+3^2+?+n^2=n(n+1)(2n+1)\/6 推导过程:1、N=1时,1=1(1+1)(2×1+1)\/6=1 。2、N=2时,1+4=2(2+1)(2×2+1)\/6=5。3、设N=x时,公式成立,即1+4+9+?+x2=x(x+1)(2x+1)\/6。则当N=x+1时,1+4+9+?+x2+(x+1)2...
1^2+2^2+3^2+.+ n^2=多少?
1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)\/6 n^2=n(n+1)-n 1^2+2^2+3^2+…+n^2=1*2-1+2*3-2+...+n(n+1)-n =1*2+2*3+..+n(n+1)-(1+2+3+..+n)而n(n+1)=1\/3(n(n+1)(n+2)-n(n+1)(n-1))所以上述=1\/3(1*2*3-1*2*0+2*3*4-1*2*3...
怎么证明1^2+2^2+3^2+……+n^2的求和公式?
=[1*2*3-0+2*3*4-1*2*3+.+n(n+1)(n+2)-(n-1)n(n+1)]\/3 前后消项:=[n(n+1)(n+2)]\/3 所以1^2+2^2+3^2+.+n^2 =[n(n+1)(n+2)]\/3-[n(n+1)]\/2 =n(n+1)[(n+2)\/3-1\/2]=n(n+1)[(2n+1)\/6]=n(n+1)(2n+1)\/6 ...
1^2+2^2+3^2+………+n^2怎么算
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)\/6。解题过程如下:解:因为(n+1)^3=n^3+3n^2+3n+1 则(n+1)^3-n^3=3n^2+3n+1 n^3-(n-1)^3=3(n-1)^2+3(n-1)+1 ...3^3-2^3=3*2^3+3*2+1 2^3-1^3=3*1^3+3*1+1 把等式两边同时求和得,(n+...
1的平方加2的平方...一直加到n的平方和是多少?有公式吗?
当需要计算从1的平方到n的平方的和时,有一个简洁的公式:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)\/6。这个结论是通过数学归纳法推导得出的:1.当n=1时,左边的和是1,右边的计算结果也是1,验证了公式在n=1时成立。2.接下来假设n=x时,公式正确,即1+4+9+...+x^2=x(x+1)(...
1^2+2^2+3^2+...+n^2=?需过程谢啦
=[n(n+1)(n+2)]\/3-[n(n+1)]\/2 =n(n+1)[(n+2)\/3-1\/2]或者数学归纳法..或者 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...n^3-(n-1)^3=2*n^2+(n-1)^2-n 等式全相加 n^3-1^3=2*(2^2+3^2+...+n^2)+[...
1^2+2^2+3^2+……+n^2等于啥?要过程 谢谢谢谢谢谢!
1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)\/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3...
求和1^2+2^2+3^2...+N^2=?
1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)\/6
1^2+2^2+3^2+...+n^2的答案及解题过程
(n+1)^3=n^3+3n^2+3n+1,所以(n+1)^3-n^3=3n^2+3n+1,n^3-(n-1)^3=3(n-1)^2+3(n-1)+1...3^3-2^3=3*(2^2)+3*2+12^3-1^3=3*(1^2)+3*1+1把这n个等式两端分别相加,得(n+1)^3-1=3(1^2+2^2+3^2+...+n^2)+3(1+2+3+...+n)+n,由于...