(y^2-6x)(dy/dx)+2y=0,(y^2-6x)(dy/dx)=-2y,dx/dy=(y

(y^2-6x)(dy/dx)+2y=0,(y^2-6x)(dy/dx)=-2y,dx/dy=(y^2-6x)/(-2y),dx/dy-(3/y)x=-y/2,将x看做y的函数,这就是一阶非齐次线性DE,可用常数变易法求解

(y^2-6x)dy/dx+2y=0
(y^2-6x)dy+2ydx=0
y^2dy+2(ydx-3xdy)=0
d(x/y^3)=dx/y^3+xdy(-3/y^4)=[ydx-3xdy]/y^4
即:
y^2dy+2y^4d(x/y^3)=0
dy/y^2+d(2x/y^3)=0
-d(1/y)+d(2x/y^3)=0
d(2x/y^3-1/y)=0
2x/y^3-1/y=c
2x-cy^3-y^2=0
温馨提示:内容为网友见解,仅供参考
无其他回答

(y^2-6x)(dy\/dx)+2y=0,(y^2-6x)(dy\/dx)=-2y,dx\/dy=(y
即:y^2dy+2y^4d(x\/y^3)=0 dy\/y^2+d(2x\/y^3)=0 -d(1\/y)+d(2x\/y^3)=0 d(2x\/y^3-1\/y)=0 2x\/y^3-1\/y=c 2x-cy^3-y^2=0

数学问题求解答
(y^2-6x)(dy\/dx)+2y=0,(y^2-6x)(dy\/dx)=-2y,dx\/dy=(y^2-6x)\/(-2y),dx\/dy-(3\/y)x=-y\/2,将x看做y的函数,这就是一阶非齐次线性DE,可用常数变易法求解

大一微积分(一阶线性微分方程)
解:∵(y^2-6x)y'+2y=0 ==>(y^2-6x)y'=-2y ==>(y^2-6x)dy\/dx=-2y ==>dx\/dy=(y^2-6x)\/(-2y)==>dx\/dy=3x\/y-y\/2 ==>dx\/dy-3x\/y=-y\/2 ∴先解齐次方程dx\/dy-3x\/y=0的通解 ∵dx\/dy-3x\/y=0 ==>dx\/dy=3x\/y ==>dx\/x=3dy\/y ==>ln|x|=3ln|y|+ln...

(y^2-6x)y'+2y=0 求通解。
解:∵(y^2-6x)y'+2y=0 ==>(y^2-6x)y'=-2y ==>(y^2-6x)dy\/dx=-2y ==>dx\/dy=(y^2-6x)\/(-2y)==>dx\/dy=3x\/y-y\/2 ==>dx\/dy-3x\/y=-y\/2 ∴先解齐次方程dx\/dy-3x\/y=0的通解 ∵dx\/dy-3x\/y=0 ==>dx\/dy=3x\/y ==>dx\/x=3dy\/y ==>ln|x|=3ln|y|+ln...

用常数变易法求通解。
解:∵(y^2-6x)dy\/dx+2y=0 ∴2ydx\/dy=6x-y^2...(1)∵方程(1)齐次方程是2ydx\/dy=6x ==>dx\/x=3dy\/y ==>ln│x│=3ln│y│+ln│C│ (C是常数)==>x=Cy^3 ∴齐次方程2ydx\/dy=6x的通解是x=Cy^3 于是,根据常数变易法,设方程(1)的解为x=C(y)y^3 (C(y)是关于...

这个题怎么做,求详细过程
解:∵(y^2-6x)dy\/dx+2y=0 ==>(y^2-6x)dy+2ydx=0 ==>2dx\/y^3-6xdy\/y^4+dy\/y^2=0 (等式两端同除y^4,再化简)==>(2dx\/y^3-6xdy\/y^4)+dy\/y^2=0 ==>d(2x\/y^3)-d(1\/y)=0 ==>2x\/y^3-1\/y=C (C是积分常数)==>x=(1+Cy)y²\/2 ∴原方程的...

微分方程问题 求(y^2-6x)y'=2y=0 的通解
解:∵(y^2-6x)y'+2y=0 ==>(y^2-6x)y'=-2y ==>(y^2-6x)dy\/dx=-2y ==>dx\/dy=(y^2-6x)\/(-2y)==>dx\/dy=3x\/y-y\/2 ==>dx\/dy-3x\/y=-y\/2 ∴先解齐次方程dx\/dy-3x\/y=0的通解 ∵dx\/dy-3x\/y=0 ==>dx\/dy=3x\/y ==>dx\/x=3dy\/y ==>ln|x|=3ln|y|+ln...

解微分方程
解:显然,y=0是原方程的解 当y≠0时,∵(y^2-6x)dy\/dx+2y=0 ==>-6xdy+2ydx=-y^2dy ==>-6xdy\/y^4+2dx\/y^3=-dy\/y^2 (等式两端同除y^4)==>2xd(1\/y^3)+2dx\/y^3=d(1\/y)==>d(2x\/y^3)=d(1\/y)==>2x\/y^3=1\/y+2C (C是常数)==>x=y^2\/2+Cy^3 ...

数学问题:求下面微分方程的通解或特解: (y^2-6x)y′+2y=0 等待在线_百...
简单计算一下即可,答案如图所示

微分方程求过程
详情请查看视频回答

相似回答