已知|a|=1,|b|=2,a,b的夹角为π3,试求:(1)a+b与a-b夹角的余弦值.(2)使向量a+λb与λa-b的夹

已知|a|=1,|b|=2,a,b的夹角为π3,试求:(1)a+b与a-b夹角的余弦值.(2)使向量a+λb与λa-b的夹角为钝角时,λ的取值范围.

∵|
a
|=1,|
b
|=2,
a
b
的夹角为
π
3

a
?
b
=|
a
|×|
b
|cos
π
3
=1
(1)∵(
a
+
b
2=
a
2+2
a
?
b
+
b
2=1+2×1+4=7,(
a
-
b
2=
a
2-2
a
?
b
+
b
2=1-2×1+4=3,
∴|
a
+
b
|=
7
,|
a
-
b
|=
3

a
+
b
a
-
b
的夹角为α,则
cosα=
(
a
+
b
)(
a
?
b
)
|
a
+
b
|?|
a
?
b
|
=
1?4
7
×
3
=-
21
7

a
+
b
a
-
b
夹角的余弦值等于-
21
7

(2)根据题意,不存在λ值,使向量<
温馨提示:内容为网友见解,仅供参考
无其他回答

已知a向量的模=1 b向量的模=2 a,b夹角π\/3求a+b与a-b夹角的余弦值
|a|=1,|b|=2, a,b夹角=π\/3 let a+b与a-b夹角 =x |a+b|^2 = |a|^2+|b|^2 +2a.b = 1+4+2= 7 |a+b|=√7 |a-b|^2 = |a|^2+|b|^2 -2a.b = 1+4-2= 3 |a-b|=√3 (a+b).(a-b) = |a+b||a-b|cosx |a|^2-|b|^2 = |a+b||a-b|cos...

...a│=2,│b│=1,a与b的夹角为Л\/3,求向量a+b与a-b的夹角的余弦值_百...
let a+b与a-b的夹角 =x |a+b|^2 = |a|^2+|b|^2 +2|a||b|cosπ\/3 = 4 +1 + 2(2)(1)(1\/2)= 7 |a+b| =√7 |a-b|^2 = |a|^2+|b|^2 -2|a||b|cosπ\/3 = 3 |a-b|=√3 (a+b).(a-b) = |a|^2 -|b|^2 = 3 = |a+b||a-b|cosx 3 ...

已知丨a丨=1,丨b丨=2,a与b的夹角为π\/3,那么丨a+b丨*丨a-b丨=()(a...
根据余弦公式 |a+b|=√(丨a丨^2+丨b丨^2-2丨a丨丨b丨cos2∏\/3)=√6 |a-b|=√(丨a丨^2+丨b丨^2-2丨a丨丨b丨cos∏\/3)=2 丨a+b丨*丨a-b丨=2√6

已知|a|=2,|b|=1,a与b的夹角为π\/3,求向量2a+b与向量3a-b的夹角的余弦...
原创解答,望采纳支持!

已知|a|=2,|b|=1,a与b的夹角为π\/3,求向量2a+3b与3a-b的夹角(精确到1...
已知向量 a b c两两成角相等,所以又两种情况,1种:3个向量在一条直线上;2:3个向量在一个平面上,各与其他2个向量呈120°。2ab+2bc+2ac =2(ab+bc+ac) 又可以根据公式 ab=|a| |b| cos α 这样就可以把角度代进去了, 第一种情况: 让α=0°; 第二种情况:α=120°。求2(...

已知|a|=1,|b|=2,a与b的夹角为π\/3,那么|a+b|乘以|a-b| 根号21;
|a+b|²=a²+2ab+b²=1+2×1×2cosπ\/3+4=7 ∴|a+b|=√7 |a-b|²=a²-2ab+b²=1-2×1×2cosπ\/3+4=3 ∴|a+b|=√3 ∴|a+b|乘以|a-b|=√7×√3=√21

已知向量a,b满足|a|=1,|b|=2且a与b的夹角为π\\3,则|a+b|=
已知向量a,b满足|a|=1,|b|=2且a与b的夹角为π\\3,则|a+b|=  我来答 1个回答 #国庆必看# 旅行如何吃玩结合?新科技17 2022-08-17 · TA获得超过423个赞 知道小有建树答主 回答量:122 采纳率:0% 帮助的人:33.4万 我也去答题访问个人页 ...

已知|a|=1,|b|=2,a与b的夹角为3\/π,那么|a+b|·|a-b|=?
ab=|a||b|cos<π\/3>=2×1×1\/2=1那么|a+b|=√(a+b)^2=√(a^2+2ab+b^2)=√(4+2+1)=√7 |a-b|=√(a-b)^2=√(a^2-2ab+b^2)=√(4-2+1)=√3所以|a+b|×|a-b|=√7×√3=√21

已知|向量a|=1|向量b|=2,向量a与向量b的夹角为π\/3,那么|向量a+向量b...
平方后再开方就可以算模了 向量a+b的模=1+4+1\/2×1×2=6再开方 同理a-bd模=4开方 相乘的2倍根号6

已知a的模等于2,b的模等于1,a与b的夹角为π\/3,求向量a+b与a-2b的夹角...
a·b=2*1*cosπ\/3=1 |a+b|^2=(a+b)^2=a^2+2a·b+b^2=4+2+1=7 |a-2b|^2=a^2-4a·b+4b^2=4-4+4=4 (a+b)·(a-2b)=a^2-a·b-2b^2=4-1-2=1 cos<a+b,a-2b> =(a+b)·(a-2b)\/|a+b|*|a-2b| =1\/2根号7 =根号7\/14 ...

相似回答