陈景润为什么要证明1+1=2

如题所述

1+1=2只是哥德巴赫猜想的简化描述,实际上没有看上去那么简单
把它翻译成文字就是,证明:所有的大于2的偶数,都可以表示为两个素数的和
哥德巴赫猜想是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想(Goldbach Conjecture).同年6月30日,欧拉在回信中认为这个猜想可能是真的,但他无法证明.现在,哥德巴赫猜想的一般提法是:每个大于等于6的偶数,都可表示为两个奇素数之和;每个大于等于9的奇数,都可表示为三个奇素数之和.其实,后一个命题就是前一个命题的推论.
哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个著名的难题.18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破.1937年苏联数学家维诺格拉多夫(и.M.Bиногралов,1891-1983),用他创造的"三角和"方法,证明了"任何大奇数都可表示为三个素数之和".不过,维诺格拉多夫的所谓大奇数要求大得出奇,与哥德巴赫猜想的要求仍相距甚远.
直接证明哥德巴赫猜想不行,人们采取了“迂回战术”,就是先考虑把偶数表为两数之和,而每一个数又是若干素数之积.如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立.从20世纪20年代起,外国和中国的一些数学家先后证明了"9+9""2十3""1+5""l+4"等命题.
1966年,我国年轻的数学家陈景润,在经过多年潜心研究之后,成功地证明了"1+2",也就是"任何一个大偶数都可以表示成一个素数与另一个素因子不超过2个的数之和".这是迄今为止,这一研究领域最佳的成果,距摘取这颗"数学王冠上的明珠仅一步之遥,在世界数学界引起了轰动.但这一小步却很难迈出.“1+2”被誉为陈氏定理.
哥德巴赫的问题可以推论出以下两个命题,只要证明以下两个命题,即证明了猜想:
(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和.
(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和.
这道著名的数学难题引起了世界上成千上万数学家的注意.200年过去了,没有人证明它.到了20世纪20年代,才有人开始向它靠近.1920年,挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比6大的偶数都可以表示为(9+9).这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫猜想”.
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理(Chen's Theorem) .“任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积.” 通常都简称这个结果为大偶数可表示为 “1+2 ”的形式.
在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t ”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了 “9+9 ”.
1924年,德国的拉特马赫(Rademacher)证明了“7+7 ”.
1932年,英国的埃斯特曼(Estermann)证明了 “6+6 ”.
1937年,意大利的蕾西(Ricei)先后证明了“5+7 ”,“4+9 ”,“3+15 ”和“2+366 ”.
1938年,苏联的布赫 夕太勃(Byxwrao)证明了“5+5 ”.
1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4+4 ”.
1948年,匈牙利的瑞尼(Renyi)证明了“1+c ”,其中c是一很大的自然数.
1956年,中国的王元证明了 “3+4 ”.
1957年,中国的王元先后证明了 “3+3 ”和 “2+3 ”.
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1+5 ”,中国的王元证明了“1+4 ”.
1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了“1+3 ”.
1966年,中国的陈景润证明了 “1+2 ”.
而1+1,这个哥德巴赫猜想中的最难问题,还有待解决.
温馨提示:内容为网友见解,仅供参考
第1个回答  2021-01-11

第2个回答  2018-11-27
陈景润从来就没证明过1+1=2,他证明的是1+1,这只是一个符号,不是一个算式。意思就是大于2的偶数,都能表示成两个素数的和。是1+1,不是1+1=2

1+1为什么等于2?
3、陈景润通过构造和证明,推导出1+1等于2的结论。他指出,根据集合论的定义,两个集合的并集就是这两个集合中所有元素的集合。因此,我们可以将数字1和数字1这两个集合合并,得到的并集就是包含数字1和数字1的所有元素的集合,也就是数字2。因此,1+1等于2。4、陈景润进一步解释了这个证明的普遍性。

1+1=2 陈景润花了那么长时间来证明 意义何在?
陈景润那是为了证明 哥德巴赫猜想 偶数为两个素数之和 但是他只证明到1+2(是“偶数为一个素数及一个不超过两个素数的乘积之和”的简称),至今哥德巴赫猜想未被证明 1+1=2是数学基础,不需要证明的,有别的人证明过1+1=2,不过个人觉得没什么必要 ...

证明为什么1加1等于2?
用反证法证明:假定1+1≠2根据自然数大小规定,后一个数是前面一个数+1,即2=1+1两者矛盾,所以1+1=2陈景润证明的叫歌德巴-赫猜想。并不是证明所谓的1+1为什么等于2。当年歌德巴-赫在给大数学家欧拉的一封信中说,他认为任何一个大于6的偶数都可以写成两个质数的和,但他既无法否定这个命题,...

1+1为什么等于2?
1+1=2背后代表的是自然数公理化的历史。自然数公理化,最早于1881年,由美国数学家皮尔斯提出,定义如下:1是最小的数;x+y,当x=1时,是下一大于y的数,其它情况,是下一个大于x⁻+y的数;x×y,当x=1时,就是y,其它情况,为y+x⁻y;其中,x⁻是上一个小于x的数。

研究1+1=2有何意义?数学家陈景润为何专研这一课题?
“1+2=3”,即大偶数可以表示为一个质数与不超过两个质数乘积之和的形式,此前已被陈景润证明,但是他耗费了大量的时间和精力却无法证明“1+1=2”。有人认为类似于这样的研究毫无意义,但是我们要明白很多事物是直接或间接的关联起来的,如果把基础科学比作地基,那么应用科学就是高楼,没有地基何来...

陈景润为什么要证明1+1=2
1966年,我国年轻的数学家陈景润,在经过多年潜心研究之后,成功地证明了"1+2",也就是"任何一个大偶数都可以表示成一个素数与另一个素因子不超过2个的数之和".这是迄今为止,这一研究领域最佳的成果,距摘取这颗"数学王冠上的明珠仅一步之遥,在世界数学界引起了轰动.但这一小步却很难迈出.“1+2...

1+1为什么等于2
1966年,中国的陈景润证明了 “1+2 ”[用通俗的话说,就是大偶数=素数+素数*素数或大偶数=素数+素数(注:组成大偶数的素数不可能是偶素数,只能是奇素数。因为在素数中只有一个偶素数,那就是2。)]。其中“s + t ”问题是指: s个质数的乘积 与t个质数的乘积之和 哥德巴赫猜想中的‘1+1...

1加1为什么等于2?
1+1=2 是初等数学范围内的数值计算等式。当某个原始人第一个意识到1+1=2,进而认识到两个数相加得到另一个确定的数时,这一刻是人类文明的伟大时刻,因为他发现了一个非常重要的性质——可加性。这个性质及其推广正是数学的全部根基,它甚至说出数学为什么用途广泛的同时,告诉我们数学的局限性。人...

数学上1+1=2是为什么,就是陈景润研究的
所谓的“1+1”或“1+2”都只是个简称。哥德巴赫猜想说的是,任何一个大于 6的偶数都可以表示成两个素数之和,通常表示为“1+1”。我国数学家陈景润于1966年证明:任何充分大的偶数,都是一个质数与一个自然数之和,而后者可表示为两个质数的乘积。通常这个结果表示为“1+2”。这是目前这个问题...

1+1为什么等于2呢?听说陈景润曾经证明过~是不是真的?
陈景润的证明是最接近这个猜想的,他证明了,任何一个偶数都可以表示成 一个质数 和 一个不多于两个质因数的乘积的数 之和。由于陈景润将哥德巴赫猜想证明到“两个数相加”的阶段,所以称这个证明为1+1,至于等于2,也许是因为要证明的两个数之和为偶数吧。此非专业回答,建议你查查哥德巴赫猜想及...

相似回答