如何理解收敛的数列一定有界,而有界的

如题所述

收敛的数列{xn},在n→∞时,xn→A,这个A是一个固定的极限值,是一个常数,所以必然有界。但这个有界不是说上下界都有,只有上界、或只有下界、或上下界都有均可以叫有界。

有界的数列不一定收敛,最简单的例子xn=sin(n),或者xn=(-1)^n,它们都是有界数列,但n→∞时,xn的极限不存在,所以不收敛。

扩展资料:

收敛数列与其子数列间的关系:

1、子数列也是收敛数列且极限为a恒有|Xn|<M。

2、若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。

3、如果数列收敛于a,那么它的任一子数列也收敛于a。

全局收敛对于任意的X0∈[a,b],由迭代式Xk+1=φ(Xk)所产生的点列收敛,即其当k→∞时,Xk的极限趋于X*,则称Xk+1=φ(Xk)在[a,b]上收敛于X*。

局部收敛若存在X*在某邻域R={X| |X-X*|<δ},对任何的X0∈R,由Xk+1=φ(Xk)所产生的点列收敛,则称Xk+1=φ(Xk)在R上收敛于X*。

参考资料来源:百度百科--收敛数列

温馨提示:内容为网友见解,仅供参考
第1个回答  2018-02-01
收敛的数列{xn},在n→∞时,xn→A,这个A是一个固定的极限值,是一个常数,所以必然有界。但这个有界不是说上下界都有,只有上界、或只有下界、或上下界都有均可以叫有界。
有界的数列不一定收敛,最简单的例子xn=sin(n),或者xn=(-1)^n,它们都是有界数列,但n→∞时,xn的极限不存在,所以不收敛。本回答被网友采纳
第2个回答  2019-10-17
因为数列是:“定义域为正整数的函数”,自变量只能取1.2.3.4...这样的正整数,一直到无穷远处的正整数,所以可能出现极限的地方只能是无穷远处,因为最小的自变量取值为1不存在无穷小

所以当无穷远处有极限了(收敛)则整个函数有界(因为从1到无穷远处每个值都确定,一定会有最大值和最小值)

顺便一提,必须同时有上下界才叫做有界,也就是说整个函数同时存在最大值和最小值。
第3个回答  2020-11-06

数列收敛一定是有界的证

第4个回答  2019-10-18
既有上界又有下界不是才叫有界吗?

如何理解收敛的数列一定有界,而有界的
收敛的数列{xn},在n→∞时,xn→A,这个A是一个固定的极限值,是一个常数,所以必然有界。但这个有界不是说上下界都有,只有上界、或只有下界、或上下界都有均可以叫有界。有界的数列不一定收敛,最简单的例子xn=sin(n),或者xn=(-1)^n,它们都是有界数列,但n→∞时,xn的极限不存在,所以...

如何理解收敛的数列一定有界,而有界的
在这一定义中,收敛性保证了数列的项最终会聚于一个有限值,这正是数列有界的本质。数列有界意味着存在一个上限和一个下限,所有的数列项都不超出这两个界限。以收敛性为基础,我们可以推断出数列的有界性。对于数列的任意项an,只要n足够大,an就会在极限值附近波动,从而保持在某个较小的区间内。因...

如何理解收敛的数列一定有界,而有界的数列却不一定
收敛,由极限定义就可以推出有界。有界,举例,数列奇数项是1,偶数项-1,数列绝对值不会大于1,但是数列没有极限

高等数学:有界不一定收敛,收敛一定有界,为什么呢
收敛一定有界指的是此数列或函数存在一个趋势,这个趋势的极限是一个确定的值,就像反比例函数一样。收敛数列一定有界(反证,假设无界,肯定不收敛)有界数列不一定收敛(反例,数列{(-1)^n}是有界的,但它却是发散的)本质的不同数列的收敛是指当n趋于无穷时数列项趋于一个数,而数列的前面的有限项是...

为何数列有界必然收敛,有界必然收敛?
2、数列收敛与有界性的关系:数列收敛则数列必然有界,但是反过来不一定成立。如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。相关内容解释 一、有界函数的性质:1、单调性。闭区间上的单调函数必...

收敛数列一定有界?
本质就是收敛数列一定有界,(反证,假设无界,肯定不收敛)有界数列不一定收敛,(反例,数列{(-1)^n}是有界的,但它却是发散的。)数列收敛指的是数列有极限。我们把极限存在的数列称为收敛数列,把极限不存在的数列称为发散数列。数列极限定义设{Xn}为一数列,如果存在一个实数a,对于?ε>0,?

...到底什么意思 按道理是说收敛一定有界,而有界不一定收敛。 我想知...
收敛一定有界指的是此数列或函数存在一个趋势 这个趋势的极限是一个确定的值 就像反比例函数一样 有界不一定收敛是指此数列或函数存在上下限 但没有一种趋势是趋向于某一个确定的数 就像正弦函数一样 虽然有正负1给它作为上下限 但随着x的变化 函数值没有趋向于一个确定的1一样 ...

为什么数列收敛,必有界?
无界数列一定发散,所以有界是收敛的必要条件;但是有界数列不一定收敛。例如数列{(-1)^n},显然是有界的,但也是发散的。所以有界不是收敛的充分条件。有界数列 有界数列,是数学领域的定理,是指任一项的绝对值都小于等于某一正数的数列。有界数列是指数列中的每一项均不超过一个固定的区间,其中分...

收敛序列一定有界吗?为什么?
收敛序列一定有界。这是因为收敛序列的定义就是:如果一个数列的项越来越接近于某一个确定的数,那么这个数列就被称为收敛序列。这个确定的数就是这个数列的极限。首先,我们来看一下什么是有界序列。有界序列是指存在一个实数M,使得对于序列中的所有元素x_n,都有|x_n|现在我们来证明收敛序列一定...

怎样理解收敛数列一定有界?
收敛数列一定有界。本质就是收敛数列一定有界,(反证,假设无界,肯定不收敛)有界数列不一定收敛,(反例,数列{(-1)^n}是有界的,但它却是发散的。)收敛数列简介:收敛数列,数学名词,设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,...

相似回答