1-2\/1*(1+2)-3\/(1+2)*(1+2+3)-...-10\/(1+2+3+...+9)*(1+2+3+...+1...
解答过程见下图所示:
1-2\/1*(1+2)-3\/(1+2)*(1+2+3)-.-10\/(1+2+3+4+.+9)*(1+2+3+4+.+10...
1-2\/1*(1+2)-3\/(1+2)*(1+2+3)-...-10\/(1+2+3+4+...+9)*(1+2+3+4+...+10) 用简便方法 急~~~ 以上式子等于1-2\/(1*3)-3\/(3*6)-4\/(6*10)...10\/(45*55)=1-(1-1\/3)-(1\/3-1\/6)-(1\/6-1\/10)...(-1\/45-1\/55)=1-1+1\/3-1\/3...
1-2\/1*(1+2)-3\/(1+2)(1+2+3)-4\/(1+2+3)(1+2+3+4)...-100\/(1+2+3...
原式=1-2*(1\/2-1\/6+1\/6-1\/12+1\/12-1\/20+...+1\/9900-1\/10100 =1-2*(1\/2-1\/10100)=1-10098\/10100 =1\/5050
1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+...10)=
你应该知道1+2+3+……+50,这种题怎么算吧,公式:(第一项+最后一项)*项数\/2 因此1+2+3+……+50=(1+50)*50\/2 那么1\/(1+2+3+...+50)=1\/【(1+50)*50\/2】,简化为,1\/(1+2+3+...+50)=2*1\/(51*50)1\/(1+2+3+...+50)=2*(1\/50-1\/51),同理 1\/(1...
1+1\/(1+2)+1\/(1+2+3)...1\/(1+2+3+4...100)
如下:1+2+3+...+n=n(n+1)\/2 1\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 分数计算方法:...
2\/[1*(1+2)]+3\/[(1+2)*(1+2+3)]+4\/[(1+2+3)*(1+2+3+4)]+...+100\/...
1\/[n*(n+1)]=1\/n-1\/(n+1)1\/[n*(n+2)]=1\/2{1\/n-1\/(n+2)} 即 1\/[n*(n+m)]=1\/m{1\/n-1\/(n+m)} 你可以自己代数字 试一试 所以 该题 原式=1\/1-1\/3+1\/3-1\/6+...+1\/(99*100\/2)-1\/(100*101\/2)=1-1\/5050=5049\/5050 ...
数列1,1\/(1+2),1\/(1+2+3)...1\/(1+2+...+n) 前n项和
答案是2n\/(n+1)过程如下因为1+2+3...+n=n(n+1)\/2 所以1\/(1+2+...+n)=2\/(n(n+1))=2(1\/n-1\/(n+1))因此,1+1\/(1+2)+1\/(1+2+3)...+1\/(1+2+3...+n)=2(1\/2+1\/2-1\/3+1\/3-1\/4+...+1\/(n-1)-1\/n+1\/n-1\/(n+1))=2(1-1\/(n+1))=2n\/...
1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+…100)=
第二种:因为:1+2=2*3\/2 1+2+3=3*4\/2 1+2+3+4=4*5\/2 1+2+3+……+100=100*101\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+2006)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*...
1+1\/(1+2)+1\/(1+2+3)...1\/(1+2+3+4+...+2004)
首先分析得知,分子都是1,分母则是一个等差数列的前n项和,一共是2004项求和,设A1=1,An=1\/(n*(1+n)\/2)=2\/(n*(n+1))=2\/n-2\/(n+1),1+1/(1+2)+1/(1+2+3)...1\/(1+2+3+4+...+2004)=(2\/1-2\/2)+(2\/2-2\/3)+(2\/3-2\/4)+...+(2\/2004-2\/2005)=...
(1+2)\/2*(1+2+3)\/(2+3)*(1+2+3+4)\/(2+3+4)*…(1+2+3+…1993)\/(2+3+...
解答:取An=[1+2+3+...+(n+1)]\/[2+3+...+(n+1)][n≥1,n∈Z] ,则 An=0.5(n+1)(n+2)\/[0.5(n+1)(n+2)-1]=(n+1)(n+2)\/n(n+3),原式=A1×A2×A3×...×An =[(2×3)\/(1×4)]×[(3×4)\/(2×5)]×[(4×5)\/(3×6)]×...×[(n+1)(n+...