大一高数不定积分
∫(cos3xcos2x)dx =(1\/2)∫(cos3xcos2x+sin3xsin2x)+(cos3xcos2x-sin3xsin2x)dx =(1\/2)∫(cosx+cos5x)dx =(sinx)\/2+(sin5x)\/10+C 类似∫(cosaxcosbx)dx、∫(sinaxcosbx)dx、∫(sinaxsinbx)dx 都可以这样做
大一高数不定积分:
=-cosx+(cos立方x)\/3+c
求解大一高数不定积分!!
令1+x^4=t,所以:dt\/4=x^3dx,原式=(1\/4)sdt\/(1+t^(1\/3),这里再使用公式:二项微分式: ∫[(x^m)(a+b*x^n)^p]dx(m,n和p为有理数),由契比协夫定理,被积函数可化为有理函数的3种情况:一。p为整数,假定x=z^N,其中N为分数m和n的公分母;二。(m+1)\/n为...
大一高数不定积分
则f(x)的原函数为 F(X)=∫f(x)dx=∫x²dx=x^3 \/3 +C 当C=0时,原函数是奇函数;当C≠0时,原函数非奇非偶。再如,f(x)=cosx偶函数,原函数F(x)=sinx +C C=0时原函数为奇函数,C≠0时,原函数为非奇非偶函数。
大一高数不定积分的求法,求解!
=∫dy\/√[(Cy²+1)\/y²]=∫y*dy\/√(Cy²+1)=1\/(2C) * ∫2C*dy\/√(Cy²+1)=1\/(2C) * ∫d(Cy²+1)\/√(Cy²+1)=√(Cy²+1) + C'
大一高数?不定积分的计算
令t=sinu,dt=cosudu ∫√(1-t^2)dt =∫(cosu)^2du =1\/2∫(1+cos2u)du =1\/2u+1\/4sin2u+C =1\/2arcsint+1\/2t√(1-t^2)+C
大一,高数,求解不定积分,先谢了!
=(cos^2 x- sin^2 x)\/[sin^2 x cos^2 x]=1\/sin^2 x - 1\/ cos^2 x 分别积分 =-cotx-tanx+C
大一高数不定积分
首先,奇函数在对称区间的积分值为0,因此该积分的第二部分为0;第一部分积分,被积函数表示x轴上方的半圆 该积分的值等于该半圆的面积。因此 这个积分=1\/2*π*2^2+0=2π
大一高数问题不定积分
令√x=u,则dx\/2√x=du,dx=2(√x)du=2udu,原式=2∫ucosudu =2∫ud(sinu)=2[usinu-∫sinudu]=2(usinu+cosu)+C =2[(√x)sin(√x)+cos(√x)]+C ~~~∫√x(x+1)^2dx 令√x=t, 则dx=2tdt,带入 =∫t(t^2+1)^2*2tdt =∫2t^6+4t^4+2t^2dt =2\/7t^7+4\/5t...
大一高数 求不定积分 用分部积分发 详细过程 谢谢
【知识点】若矩阵A的特征值为λ1,λ2,...,λn,那么|A|=λ1·λ2·...·λn 【解答】|A|=1×2×...×n= n!设A的特征值为λ,对于的特征向量为α。则 Aα = λα 那么 (A²-A)α = A²α - Aα = λ²α - λα = (λ²-λ)α 所以A...