一加二加三加四加到100等于多少

如题所述

1+2+3+4+...+100=(1+100)×100/2=101×50=5050

解题依据:此题看做等差数列求和去计算,首项为1,公差为1,项数为100。

求和公式 若一个等差数列的首项为 ,末项为 那么该等差数列和表达式为: 即(首项+末项)×项数÷2。

等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。

扩展资料:

在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和;特别的,若项数为奇数,还等于中间项的2倍,

即, 中。

例:数列:1,3,5,7,9,11中 ,即在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和。

等差数列的应用日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。若为等差数列,且有  。则  。

其实,中国古代南北朝的张丘建早已在《张丘建算经》提到等差数列了:今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日织一尺,计织三十日,问共织几何?书中的解法是:并初、末日织布数,半之,余以乘织讫日数,即得。这相当于给出了  的求和公式。

(1)从通项公式可以看出,  是n的一次函数(d≠0)或常数函数(d=0),  排在一条直线上,由前n项和公式知,  是n的二次函数(d≠0)或一次函数  ,且常数项为0。

(2)从等差数列的定义、通项公式,前n项和公式还可推出

等差数列通项公式通过定义式叠加而来。

如果一个等差数列的首项为  ,公差为d,那么该等差数列第n项的表达式为:

或:

或:

参考资料:百度百科——等差数列

温馨提示:内容为网友见解,仅供参考
第1个回答  2019-01-08

1+2+3+4+...+100=5050。

解答过程如下:

(1)1+2+3+4+...+100此题看做等差数列求和去计算,首项为1,公差为1,项数为100。

(3)求和公式,若一个等差数列的首项为a1,末项为an,那么该等差数列和表达式为: 即(首项+末项)×项数÷2。

(3)代入首项1,公差1,项数100,进入(首项+末项)×项数÷2得到:(1+100)×100/2。

(4)(1+100)×100/2=101×50=5050。

扩展资料:

等差数列的一些性质:

1、和=(首项+末项)×项数÷2;

2、项数=(末项-首项)÷公差+1;

3、首项=2x和÷项数-末项或末项-公差×(项数-1);

4、末项=2x和÷项数-首项;

5、末项=首项+(项数-1)×公差;

6、2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。

参考资料:百度百科-等差数列

本回答被网友采纳
第2个回答  2015-12-04

  1+2+3+4+……+99+100=1050

  先看下图:

  从1加到9,和是45。这种把这一列数的第一个与最后一个相加、第二个与倒数第二个相加、第三个与倒数第三个相加……的方法,计算起来比较简便。

  其实我们还可以这样算:1+2+3+4+……+99+100=100÷2×(1+100)=50×101=5050;1+2+3+4+……+9=9÷2×(1+9)=4.5×10=45(结合上图的例子,想想为什么这样算?)

  观察“1+2+3+4+……+9”和“1+2+3+4+……+99+100”,它们有相同之处,就是每相邻的两个数的差都相同,象这样的一列数叫做“等差数列”,等差数列是常见数列的一种:如果一个数列从第二项起,每一项与它的前一项的差等于同一个固定的数,这个数列就叫做等差数列,而这个固定的数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……(公差是2);5,10,15,20,25,30……(公差是5)。

  等差数列的通项公式为:an=a1+(n-1)d。上例中公差d=2,第10个数就是n=10,an=a1+(n-1)×d=2+(10-1)×2=2+18=20,即第10个数是20。

  等差数列的前n项和(用sn表示)公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。注意: 以上n为自然数。这些知识到中学会学到的。

第3个回答  2015-05-29
著名数学家高斯,最著名的故事莫过于小学时计算1+2+3+...+100的值。
当时高斯上小学,教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。
老师在班上出了这样一道题,叫大家算。谁知屁股还没坐稳高斯就说算出来了。老师很惊讶,问他怎么算的,他就说先算1+100=101,2+99=101,。。。这样一共有50个101,因此结果是5050。

1+2+3+4+5+……+99
=(1+99)+(2+98)+(3+97)+......+(49+51)+50
=49×100+50
=4950

1+2+3+4+5+……+100
=(1+100)+(2+99)+......+(50+51)
=50×101
=5050

所以呢,这种题可以像高斯一样第一个数加最后一个数,第二个数加倒数第二个数,以此类推。本回答被提问者和网友采纳
第4个回答  2015-05-30
著名数学家高斯,最著名的故事莫过于小学时计算1+2+3+...+100的值。
当时高斯上小学,教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。
老师在班上出了这样一道题,叫大家算。谁知屁股还没坐稳高斯就说算出来了。老师很惊讶,问他怎么算的,他就说先算1+100=101,2+99=101,。。。这样一共有50个101,因此结果是5050。

1+2+3+4+5+……+99
=(1+99)+(2+98)+(3+97)+......+(49+51)+50
=49×100+50
=4950

1+2+3+4+5+……+100
=(1+100)+(2+99)+......+(50+51)
=50×101
=5050

所以呢,这种题可以像高斯一样第一个数加最后一个数,第二个数加倒数第二个数,以此类推。

一加二加三加四加到100等于多少
1+2+3+4+...+100=(1+100)×100\/2=101×50=5050 解题依据:此题看做等差数列求和去计算,首项为1,公差为1,项数为100。求和公式 若一个等差数列的首项为 ,末项为 那么该等差数列和表达式为: 即(首项+末项)×项数÷2。等差数列是指从第二项起,每一项与它的前一项的差等于同一...

一加二加三加四加到100等于多少
=5050

一加二加三加四一直加到一百等于多少
=5050

一加一加二加三加四,一直加到100等于几呀?
一加一加二加三加四,一直加到100等于5050

一加,二加,三加,四一直加到100等于多少?
做这道题其实是有规律的,从1加到100,我们就会发现,1+100=101,2+99=101,3+98=101,一直到55+56都等于101,而这样的和一共有50组,所以只需要用101×50就行了,也就是5050

一加二加三加四加到一百等于多少
.。.,高表示要加的数的个数 比如2+3+4+。。,下底表示最后一个数:(上底+下底)×高÷2 这里的上底表示第一个数,50+51一共50组 也就是101×50=5050 那如果是从1加到99呢 也有方法的 类似于梯形面积公式...,2+99从1开始加一直加到100 等于5050 方法1+100。

一加二加三加四加五一直加到一百等于多少?
从一加一加二加三加四…一直加到一百等于多少? 前面那个1要加两边吗? 那先算1加到100你这样看,两边开始加1+100=1012+99=1013+98=101。。。50+51=101100个数刚好组成50组,每组都是101所以结果为5050你要算1+1+2+3+。。。+100的话就是5051 以后你就会知道,这是一个最简单的等差数列...

一加一加二加三加四一直加到一百是多少
这道题是很典型的项数计算题。1+1+2+…+100,可以根据多项式求和公式来进行计算。S=(1+100)*100\/2+1答案是5051 其实,这种大量项数相加的题目,只要善于发现其中的规律的话,还是非常好做的呢。

一加二加三加四加五一直加到一百等于多少?
从1开始加一直加到100 等于5050 方法1+100,2+99...,50+51一共50组 也就是101×50=5050 那如果是从1加到99呢 也有方法的 类似于梯形面积公式:(上底+下底)×高÷2 这里的上底表示第一个数,下底表示最后一个数,高表示要加的数的个数 比如2+3+4+。。。+101=(2+101)×100÷2...

一加二加三加四加到一百等于多少
1+2+3+4+5+……+99 =(1+99)+(2+98)+(3+97)+...+(49+51)+50 =49×100+50 =4950 1+2+3+4+5+……+100 =(1+100)+(2+99)+...+(50+51)=50×101 =5050 所以呢,这种题可以像高斯一样第一个数加最后一个数,第二个数加倒数第二个数,以此类推。

相似回答