什么是斐波那契数列?

如题所述

简单地说就是1, 1, 2, 3, 5, 8, 13, 21, 34……这个数列,规律是从第三项开始,每项都为其前面两数之和。关于这个数列,著名科普作家方舟子有过专文阐述,现转载过来:

植物的神秘数字是上帝安排的和谐美?

文/方舟子

扑克牌上的“梅花”并非梅花,甚至不是花,而是三叶草。在西方历史上,三叶草是一种很有象征意义的植物,据说第一叶代表希望,第二叶代表信心,第三叶代表爱情,而如果你找到了四叶的三叶草,就会交上好运,找到了幸福。在野外寻找四叶的三叶草,是西方儿童的一种游戏,不过很难找到,据估计,每一万株三叶草,才会出现一株四叶的突变型

在中国,梅花有着类似的象征意义。民间传说梅花五瓣代表着五福。民国把梅花定为国花,声称梅花五瓣象征五族共和,具有敦五伦、重五常、敷五教的意义。但是梅花有五枚花瓣并非独特,事实上,花最常见的花瓣数目就是五枚,例如与梅同属蔷薇科的其他物种,像桃、李、樱花、杏、苹果、梨等等就都开五瓣花。常见的花瓣数还有:3枚,鸢尾花、百合花(看上去6枚,实际上是两套3枚);8枚,飞燕草;13枚,瓜叶菊;向日葵的花瓣有的是21枚,有的是34枚;雏菊的花瓣有的是34、55或89枚。而其他数目花瓣的花则很少。为什么花瓣数目不是随机分布的?3, 5, 8, 13, 21, 34, 55,89,...这些数目有什么特殊吗?

有的,它们是斐波纳契数。斐波纳契(1170-1240)是中世纪意大利数学家,他不是在数花瓣数目,而是在解一道关于兔子繁殖的问题时,得出了这个数列。假定你有一雄一雌一对刚出生的兔子,它们在长到一个月大小时开始交配,在第二月结束时,雌兔子产下另一对兔子,过了一个月后它们也开始繁殖,如此这般持续下去。每只雌兔在开始繁殖时每月都产下一对兔子,假定没有兔子死亡,在一年后总共会有多少对兔子?

在一月底,最初的一对兔子交配,但是还只有1对兔子;在二月底,雌兔产下一对兔子,共有2对兔子;在三月底,最老的雌兔产下第二对兔子,共有3对兔子;在四月底,最老的雌兔产下第三对兔子,两个月前生的雌兔产下一对兔子,共有5对兔子;……如此这般计算下去,兔子对数分别是:1, 1, 2, 3, 5, 8, 13, 21, 34, 55,89, 144, ...看出规律了吗?从第3个数目开始,每个数目都是前面两个数目之和。

植物似乎对斐波纳契数着了迷。不仅花,还有叶、枝条、果实、种子等等形态特征,都可发现斐波纳契数。叶序是指叶子在茎上的排列方式,最常见的是互生叶序,即在每个节上只生1叶,交互而生。任意取一个叶子做为起点,向上用线连接各个叶子的着生点,可以发现这是一条螺旋线,盘旋而上,直到上方另一片叶子的着生点恰好与起点叶的着生点重合,做为终点。从起点叶到终点叶之间的螺旋线绕茎周数,称为叶序周。不同种植物的叶序周可能不同,之间的叶数也可能不同。例如榆,叶序周为1(即绕茎1周),有2叶;桑,叶序周为1,有3叶;桃,叶序周为2,有5叶;梨,叶序周为3,有8叶;杏,叶序周为5,有13叶;松,叶序周为8,有21叶……用公式表示(绕茎的周数为分子,叶数为分母),分别为1/2, 1/3, 2/5, 3/8, 5/13, 8/21, ……这些是最常见的叶序公式,据估计大约有90%植物属于这类叶序,而它们全都是由斐波纳契数组成的。

你如果观察向日葵的花盘,会发现其种子排列组成了两组相嵌在一起的螺旋线,一是顺时针方向,一组是逆时针方向。再数数这些螺旋线的数目,虽然不同品种的向日葵会有所不同,但是这两组螺旋线的数目一般是34和55、55和89或89和144,其中前一个数字是顺时针线数,后一个数字是逆时针线数,而每组数字都是斐波纳契数列中相邻的两个数。再看看菠萝、松果上的鳞片排列,虽然不像向日葵花盘那么复杂,也存在类似的两组螺旋线,其数目通常是8和13。有时候这种螺旋线不是那么明显,需要仔细观察才会注意到,例如花菜。如果你拿一颗花菜认真研究一下,会发现花菜上的小花排列也形成了两组螺旋线,再数数螺旋线的数目,是不是也是相邻的两个斐波纳契数,例如顺时针5条,逆时针8条?掰下一朵小花下来再仔细观察,它实际上是由更小的小花组成的,而且也排列成了两条螺旋线,其数目也是相邻的两个斐波纳契数。

为什么植物如此偏爱斐波纳契数?这和另一个更古老的、早在古希腊就被人们注意到甚至去崇拜它的另外一个“神秘”数字有关。假定有一个数φ,它有如下有趣的数学关系:

φ^2 - φ^1 -φ^0 =0

即:φ^2 -φ -1 =0

解这个方程,有两个解:

(1 + √5) / 2 = 1.6180339887...

(1 - √5) / 2 = - 0.6180339887...

注意这两个数的小数部分是完全相同的。正数解(1.6180339887...)被称为黄金数或黄金比率,通常用φ表示。这是一个无理数(小数无限不循环,没法用分数来表示),而且是最无理的无理数。同样是无理数,圆周率π用22/7,自然常数e用19/7,√2用7/5就可以很精确地近似表示出来,而φ则不可能用分母为个位数的分数做精确的有理近似。

黄金数有一些奇妙的数学性质。它的倒数恰好等于它的小数部分,也即1/φ = φ-1,有时这个倒数也被称为黄金数、黄金比率。如果把一条直线AB用C点分割,让AB/AC= AC/CB,那么这个比等于黄金数,C点被称为黄金分割点。如果一个等腰三角形的顶角是36度,那么它的高与底线的比等于黄金数,这样的三角形称为黄金三角形。如果一个矩形的长宽比是黄金数,那么从这个矩形切割掉一个边长为其宽的正方形,剩下的小矩形的长宽比还是黄金数。这样的矩形称为黄金矩形,它可以用上述的方法无限切割下去,得到一个个越来越小的黄金矩形,而如果把这些黄金矩形的对角用弧线连接起来,则形成了一个对数曲线。常见的报纸、杂志、书、纸张、身份证、信用卡用的形状都接近于黄金矩形,据说这种形状让人看上去很舒服。的确,在我们的生活中,黄金数无处不在,建筑、艺术品、日常用品在设计上都喜欢用到它,因为它让我们感到美与和谐。

那么黄金数究竟和斐波纳契数有什么关系呢?根据上面的方程:

φ^2 -φ -1 =0,

可得:

φ = 1 + 1/φ

= 1 + 1/ (1 + 1/φ)

= ...

= 1 + 1/( 1 + 1/( 1 + 1/( 1 +...)))

根据上面的公式,你可以用计算器如此计算φ:输入1,取倒数,加1,和取倒数,加1,和取倒数,……,你会发现总和越来越接近φ。让我们用分数和小数来表示上面的逼近步骤:

φ ≈ 1

φ ≈ 1 + 1/1 = 2/1 = 2

φ ≈ 1 + 1/(1+1/1) = 3/2 = 1.5

φ ≈ 1 + 1/(1+1/(1+1)) = 5/3 = 1.666667

φ ≈ 1 + 1/(1+1/(1+(1+1))) = 8/5 = 1.6

φ ≈ 1 + 1/(1+1/(1+(1+(1+1)))) = 13/8 = 1.625

φ ≈ 1 + 1/(1+1/(1+(1+(1+(1+1))))) = 21/13 = 1.615385

φ ≈ 1 + 1/(1+1/(1+(1+(1+(1+(1+1)))))) = 34/21 = 1.619048

φ ≈ 1 + 1/(1+1/(1+(1+(1+(1+(1+(1+1))))))) = 55/34 = 1.617647

φ ≈ 1 + 1/(1+1/(1+(1+(1+(1+(1+(1+(1+1)))))))) = 89/55 = 1.618182...

发现了没有?以上分数的分子、分母都是相邻的斐波纳契数。原来相邻两个斐波纳契数的比近似等于φ,数目越大,则越接近,当无穷大时,其比就等于φ。斐波纳契数与黄金数是密切联系在一起的。植物喜爱斐波纳契数,实际上是喜爱黄金数。这是为什么呢?莫非冥冥之中有什么安排,是上帝想让世界充满了美与和谐?

植物的枝条、叶子和花瓣有相同的起源,都是从茎尖的分生组织依次出芽、分化而来的。新芽生长的方向与前面一个芽的方向不同,旋转了一个固定的角度。如果要充分地利用生长空间,新芽的生长方向应该与旧芽离得尽可能的远。那么这个最佳角度是多少呢?我们可以把这个角度写成360°×n,其中0<n <1,由于左右各有一个角度是一样的(只是旋转的方向不同),例如n=0.4和n=0.6实际上结果相同,因此我们只需考虑 0.5≤n<1的情况。如果新芽要与前一个旧芽离得尽量远,应长到其对侧,即n = 0.5 =1/2,但是这样的话第2个新芽与旧芽同方向,第3个新芽与第1个新芽同方向,……,也就是说,仅绕1周就出现了重叠,而且总共只有两个生长方向,中间的空间都浪费了。如果0.6 = 3/5 呢?绕3周就出现重叠,而且总共也只有5个方向。事实上,如果n是个真分数 p/q,则意味着绕p周就出现重叠,共有q个生长方向。

显然,如果n是没法用分数表示的无理数,就会“有理”得多。选什么样的无理数呢?圆周率π、自然常数e和√2都不是很好的选择,因为它们的小数部分分别与1/7,5/7和2/5非常接近,也就是分别绕1, 5和2周就出现重叠,分别总共只有7, 7和5个方向。所以结论是,越是无理的无理数越好,越“有理”。我们在前面已经提到,最无理的无理数,就是黄金数φ≈1.618。也就是说,n的最佳值≈0.618,即新芽的最佳旋转角度大约是360°×0.618 ≈ 222.5°或 137.5°。

前面已提到,最常见的叶序为1/2, 1/3, 2/5, 3/8, 5/13和8/21,表示的是相邻两叶所成的角度(称为开度),如果我们要把它们换算成n(表示每片叶子最多绕多少周),只需用1减去开度,为1/2, 2/3, 3/5, 5/8, 8/13, 13/21。它们是相邻两个斐波纳契数的比值,是不同程度地逼近1/φ。在这种情形下,植物的芽可以有最多的生长方向,占有尽可能多的空间。对叶子来说,意味着尽可能多地获取阳光进行光合作用,或承接尽可能多的雨水灌溉根部;对花来说,意味着尽可能地展示自己吸引昆虫来传粉;而对种子来说,则意味着尽可能密集地排列起来。这一切,对植物的生长、繁殖都是大有好处的。可见,植物之所以偏爱斐波纳契数,乃是在适者生存的自然选择作用下进化的结果,并不神秘。
温馨提示:内容为网友见解,仅供参考
第1个回答  2019-06-30
几世纪前人们就已发现了有趣的数学级数(斐波那契级数):3,5,8,13,21,34,55,89……此级数最大的特征是:(从第3项开始)
。这个级数与大自然植物的关系极为密切。几乎所有花朵的花瓣数都来自这个级数中的一项数字:菠萝表皮方块形鳞苞形成两组旋向相反的螺线,它们的条数必须是这个级数中紧邻的两个数字(如左旋8行,右旋13行);还有向日葵花盘……真怪!倘若两组螺线条数完全相同,岂不更加严格对称?可大自然偏不!直到最近的1993年,人们才对这个古老而重要的级数给出真正满意的解释:此级数中任何相邻的两个数,次第相除,其比率都最为接近0.618034……这个值,它的极限就是所谓的"黄金分割数"。
第2个回答  2019-07-24
1,1,2,3,5,8,13,21.....
即后一个数都为前两个数之和,即称之为斐波那契数列
第3个回答  2005-12-10
1,1,2,3,5,8,13……
每一项是前两项之和本回答被提问者采纳
第4个回答  2020-04-04

斐波那契数列是什么数列?
1、斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”。指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递推的方法定义:F(1)=1,F(2)=1, F(n...

什么是斐波那契数列?它有哪些特殊性质?
斐波那契数列是一组以整数为元素的数列,其中每个数字都是前两个数字的和。这个数列从0和1开始,然后继续下去,形成一个无限序列。斐波那契数列有许多特殊性质,其中一些包括:1.递归性:斐波那契数列可以通过递归公式F(n)=F(n-1)+F(n-2)来计算,其中F(0)=0,F(1)=1。2.黄金分割比例:斐波那契...

斐波那契数列是什么?
斐波那契数列,又称黄金分割数列、因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,提出时间为1202年。2、递推数列 递推数列是可以递推找出规律的数列,找出这个规律的通项式就是解递推数列。求递推数列通项公式的常用方法有:公式法、累加法、累乘法、待定系数法等共十种方法。

斐波那契数列是什么?在股市中怎么应用?
一、斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……这个数列从第三项开始,每一项都等于前两项之和。二、应用:通常在个别股票中不是太准确,通常在指数上有用。当市场行情处于重要关键变盘时间区域时,这些数字可以确定具体的变盘时间。使用斐波那契数列时可以由市场中某个重要的...

斐波那契数列是一个什么数列?
斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=1,F(1)=1, F(n)=F...

斐波那契数列 是什么
斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……这个数列从第三项开始,每一项都等于前两项之和。斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算...

斐波那契数列是什么?在股市中怎么应用
斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、?? 这个数列从第三项开始,每一项都等于前两项之和。通用公式:通项公式推导:解得 ,则 ∵ ∴ 解得 由于斐波那契数列越往后延伸,前一个数与后一个数之间的比例越接近黄金分割值,所以斐波那契在人类的各种科学研究中都有广泛应用。

斐波那契数列是什么?
斐波那契数列(Fibonacci sequence),也称之为黄金分割数列,由意大利数学家列昂纳多・斐波那契(Leonardo Fibonacci)提出。斐波那契数列指的是这样的一个数列:1、1、2、3、5、8、13、21、34、……,这个数列从第 3 项开始,每一项都等于前面两项之和。在数学上,斐波那契数列可以被递推的方法...

什么是费氏数列,请专家详答,望高见
斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用 递推公式 斐波那契数列:0, ...

斐波那契数是什么
斐波那契数,亦称之为斐波那契数列,又称黄金分割数列、费波那西数列、费波拿契数、费氏数列,斐波那契数列由 0 和 1 开始,之后的斐波那契数列系数由之前的两数相加得出;斐波那契数列的发现者,是意大利数学家列昂纳多·斐波那契,他生于公元1170年,卒于1240年,籍贯是比萨。他被人称作“比萨的列昂纳多”...

相似回答