1+(1\/1+2)+(1\/1+2+3).+(1\/1+2+3+.+2013)=
1+ 1\/1+2 +1\/1+2+3···+1\/1+2+3+···+100= ? {1\/n}的前n项和公式是个世界性的难题,到目前为止,未取得突破性的进展 详细的情况如下: 当n很大时,有:1+1\/2+1\/3+1\/4+1\/5+1\/6+...1\/n = 0.57721566490153286060651209 + ln(n)C++里面用log(n),pascal里面...
1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+…+n)这个怎么计算啊
所以[1\/(1+2+3+…+n)]=2\/n(n+1)=2[1\/n-1\/(n+1)]所以Sn=1+[1\/(1+2)]+〔1\/(1+2+3)〕+[1\/(1+2+3+4)]+……+[1\/(1+2+3+……+n)]=2[1\/1-1\/2]+2[1\/2-1\/3]+2[1\/3-1\/4]+...+2[1\/n-1\/(n+1)]=2[1-1\/2+1\/2-1\/3+1\/3-1\/4+...+1...
1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=? 急急急...
根据求和公式:1+2+3+...+n=n(n+1)\/2 所以1\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 ...
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+……+1\/1+2+3……+n
详情请查看视频回答
1+1\/(1+2)+1\/1+2+3)+1\/(1+2+3+4)……1\/(1+2+3+4+……2009)怎么做_百度...
1+2+3+……+n=n(n+1)\/2,所以,1\/(1+2+3+……+n)=2\/n*(n+1).原式=1+2\/2*3+2\/3*4+2\/4*5+……+2\/2009*2010 =1+2(1\/2*3+1\/3*4+1\/4*5+……+1\/2009*2010)=1+2*(1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+……+1\/2009-1\/2010)=1+2*(1\/2-1\/2010)=1+1...
...1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+L+100)的计算过程...
如下:1+2+3+...+n=n(n+1)\/2 1\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 性质 若已知一个...
1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+…+1\/(1+2+3+…+100) 简便计算方法...
它的原理是根据公式:1\/n(n+1)=1\/n-1\/(n+1)简便计算是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很复杂的式子变得很容易计算出得数。性质 减法1 a-b-c=a-(b+c)减法2 a-b-c=a-c-b 除法1 a÷b÷c=a÷(b×c)除法2 a÷b÷c=a÷c÷b 典型...
数学计算。1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+……+1\/(1+2+3+……+1...
因为1=1*2\/2 1+2=2*3\/2 ...1+2+3+4+...2003=2003*2004\/2 所以 1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+4+...2003)=2(1\/1 - 1\/2)+2(1\/2 -1\/3) +2(1\/3-1\/4)+...+2(1\/2003-1\/2004)=2-2\/2004 =2-1\/1002 =2003\/1002 ...
1+1\/(1+2)+1\/(1+2+3)+(1\/1+2+3+4)+...+1\/(1+2+3+...+100)
1\/n-1\/(n+1)]所以1\/(1+2)=2*(1\/2-1\/3)……1\/(1+2+……+100)=2*(1\/100-1\/101)而1=2*(1-1\/2)所以1+1\/(1+2)+1\/(1+2+3)+(1\/1+2+3+4)+...+1\/(1+2+3+...+100)=2*[(1-1\/2)+(1\/2-1\/3)+……+(1\/100-1\/101)]=2*(1-1\/101)=200\/101 ...
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+……1\/1+2+3+...+100等于多少
答:题目应该缺少了大量的括号吧?1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)第n项的分母是自然数之和(n+1)*n\/2 所以:1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+...+2\/(...