1/2+5/6+11/12+19/20+29/30+......+ 9701/9702+9899/9900 用简便方法计算谢谢
计算过程谢谢
灯d
请如何筹10法计算,能否把计算过程做一下,我一定给你好评
追答明早说
追问好谢谢,祝晚安
1\/2+5\/6+11\/12+19\/20+29\/30+...+9701\/9702+9899\/9900=?
1\/2+5\/6+11\/12+19\/20+29\/30+...+9701\/9702+9899\/9900 =(1-1/2)+(1-1/6)+...+(1-1/9900)=99-(1/2+1/6+...+1/9900)=99-(1/1×2+1/2×3+1/3×4+...+1/99×100)=99-(1-1/2+1/2-1/3+1/3-...+1/99...
1\/2+5\/6+11\/12+19\/20+29\/30+...+9701\/9702+9899\/9900的简便运算还有为什 ...
1\/2+5\/6+11\/12+19\/20+29\/30+...+9701\/9702+9899\/9900 =(1-1\/1*1\/2)+(1-1\/2*1\/3)+(1-1\/3*1\/4)+(1-1\/4*1\/5)+...+(1-1\/98*1\/99)+(1-1\/99*1\/100)=99-(1-1\/2+1\/2-1\/3+1\/3-1\/4+...+1\/98-1\/99+1\/99-1\/100)=99-(1-1\/100)=99-99\/100 =...
1\/2+5\/6+11\/12+19\/20+29\/30+...+ 9701\/9702+9899\/9900 用简便方法计 ...
99\/100
计算1\/2+5\/6+11\/12+19\/20+29\/30...+9701\/9701+9899\/9900
原式有误,应该为:1\/2+5\/6+11\/12+19\/20+29\/30...+9701\/9702+9899\/9900 =(1-1\/2)+(1-1\/6)+(1-1\/12)+(1-1\/20)+(1-1\/30)+...+(1-1\/9506)+(1-1\/9900)2=1×2,6=2×3,12=3×4,20=4×5,30=5×6,...9701=98×99,9900=99×100,每个分数分解后的较小...
1\/2+5\/6+11\/12+19\/20+29\/30+...+9701\/9702+9899\/9900
依此类推,11\/12=1-1\/3+1\/4 19\/20=1-1\/4+1\/5 ...9899\/9900=1-1\/99+1\/100 因此,1\/2+5\/6+11\/12+19\/20+29\/30+...+9701\/9702+9899\/9900 =1\/2+(1-1\/2+1\/3)+(1-1\/3+1\/4)+(1-1\/4+1\/5)...+(1-1\/99+1\/100)=98*1+1\/100 =98又1\/100 或者9801\/100 希...
1\/2+5\/6+11\/12+19\/20+29\/30+...+9701\/9702+9899\/9900
1\/[n*(n+1)]=1\/n-1\/(n+1)所以每一项都可以写成1-1\/[n*(n+1)]比如9899\/9900=1-1\/9900 29\/30=1-1\/30 第一项分母2=1*2 第二项分母6=2*3 最后一项分母9900=99*100 所以总共由99项 所以原题=99-(1\/2+1\/6+1\/12+1\/20+1\/30+……+1\/9900 )而 1\/2+1\/6+1\/12+1\/...
1\/2+5\/6+11\/12+19\/20+29\/30+…+9701\/9702+9899\/9900=?
1\/2+5\/6+11\/12+19\/20+29\/30+…+9701\/9702+9899\/9900 =(1-1\/2)+(1-1\/6)+(1-1\/12)+(1-1\/20)+(1-1\/30)+...+(1-1\/9702)+(1-1\/9900)=(1+1+1+1+1+...+1+1)-(1\/1*2+1\/2*3+1\/3*4+1\/4*5+1\/5*6+...+1\/98*99+1\/99*100)=99-(2\/2-1\/2+1\/2...
1\/2+5\/6+11\/12+19\/20+29\/30……9899\/990=?
1\/2+5\/6+11\/12+19\/20+29\/30+...+9701\/9702+9899\/9900 =1\/2+(1-1\/6)+(1-1\/12)+(1-1\/20)+(1-1\/30)+……+(1-1\/9702)+(1-1\/9900)=1\/2+[1-(1\/2-1\/3)]+[1-(1\/3-1\/4)]+[1-(1\/4-1\/5)]+[1-(1\/5-1\/6)]+……+[1-(1\/98-1\/99...
计算 简便计算 1\/2+5\/6+11\/12+19\/20+……+9890\/9900
1\/2+5\/6+11\/12+19\/20+29\/30+...+9701\/9702+9899\/9900=1\/2+(1-1\/6)+(1-1\/12)+(1-1\/20)+(1-1\/30)+……+(1-1\/9702)+(1-1\/9900) =1\/2+[1-(1\/2-1\/3)]+[1-(1\/3-1\/4)]+[1-(1\/4-1\/5)]+[1-(1\/5-1\/6)]+...
求助:1\/2+5\/6+11\/12+19\/20+29\/30+...+9701\/9702+9899\/9900等于多少?如何...
原式=99-(1\/2+1\/6+1\/12……+1\/9702+1\/9900)=99-(1\/1×2+1\/2×3+1\/3×4……+1\/98×99+1\/99×100)=99-(1-1\/2+1\/2-1\/3+1\/3-1\/4……+1\/98-1\/99+1\/99-1\/100)=99-(1-1\/100)=99-1+0.01 =98.01 注:第三步用了裂项法:1\/a-1\/b=1\/ab,这是小学...