矩阵相似与矩阵合同有什么区别

如题所述

相似,p^(-1)AP=B, 则称A相似B;合同, XT AX=B,则称A,B合同;简而言之,相似就是两个矩阵经过初等变换能从A变到B,此时有相同的秩,特征值;合同就是两个矩阵有相同的正负惯性指数来进行判断。

扩展资料:

在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵A和B是合同的,当且仅当存在一个可逆矩阵 C,使得C^TAC=B ,则称方阵A合同于矩阵B.

一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。

相似矩阵与合同矩阵的秩都相同。

合同矩阵:设A,B是两个n阶方阵,若存在可逆矩阵C,使得;则称方阵A与B合同,记作 A≃B。

在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。

对于 

设A,B和C是任意同阶方阵,则有:

(1)0反身性:A~ A

(2)对称性:若A~ B,则 B~ A

(3)传递性:若A~ B,B~ C,则A~ C

(4)若A~ B,则r(A)=r(B),|A|=|B|,tr(A)=tr(B)。

(5)若A~ B,且A可逆,则B也可逆,且B~ A。

(6)若A~ B,则A与B

定理1 

n阶矩阵A与对角矩阵相似的充分必要条件为矩阵A有n个线性无关的特征向量。

注: 定理的证明过程实际上已经给出了把方阵对角化的方法。

若矩阵可对角化,则可按下列步骤来实现:

(1) 求出的全部特征值;

(2)对每一个特征值,设其重数为k,则对应齐次方程组的基础解系由k个向量构成,即为对应的线性无关的特征向量;

(3)上面求出的特征向量恰好为矩阵的各个线性无关的特征向量。

推论1

若n阶矩阵A有n个相异的特征值,则A与对角矩阵相似。

对于n阶方阵A,若存在可逆矩阵P, 使其为对角阵,则称方阵A可对角化。

定理2 

n阶矩阵A可对角化的充要条件是对应于A的每个特征值的线性无关的特征向量的个数恰好等于该特征值的重数,即设是矩阵A的重特征值。

定理3 

对任意一个n阶矩阵A,都存在n阶可逆矩阵T使得即任一n阶矩阵A都与n阶约当矩阵J相似。

参考资料:百度百科-合同矩阵 百度百科-相似矩阵

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2019-08-13

矩阵相似与矩阵合同具体的不同点在于:

    矩阵相似的例子中,P-1AP=B;针对方阵而言;秩相等为必要条件;本质是二者有相等的不变因子;可看作是同一线性变换在不同基下的矩阵;矩阵相似必等价,但等价不一定相似。

2. 矩阵合同的例子中,CTAC=B;针对方阵而言;秩相等为必要条件;本质是秩相等且正惯性指数相等,即标准型相同;可通过二次型的非退化的线性替换来理解;矩阵合同必等价,但等价不一定合同。

3. 总结:矩阵的相似和矩阵的合同都是由线性空间中坐标系的转换引起的。我们在线性空间中定义矩阵和向量的乘法,并将矩阵理解成线性空间中“运动”的施加,变换坐标系之后,同一个“运动”在不同坐标系下是相似的关系。我们在线性空间中定义向量的内积(或者说双线性型),同一个双线性型运算在不同坐标系下相差合同矩阵。之所以要换坐标系,就是为了在最简单的坐标系下看清问题的本质。

扩展资料

一.矩阵相似:

1.概念:

定义1设A,B都是n阶矩阵, 若存在 可逆矩阵P,使

P^(-1)AP=B,则称B是A的相似矩阵, 并称矩阵A与B 相似。记为A~B.

对进行运算称为对进行相似变换, 称可逆矩阵为相似变换矩阵.

矩阵的相似关系是一种等价关系,满足:

(1) 反身性: 对任意阶矩阵,有相似;

(2) 对称性: 若相似, 则与相似;

(3) 传递性: 若与相似, 则与相似。

2.性质:

定理:若n阶矩阵A与B相似,则A与B的特征多项式相同,从 A与B的特征值亦相同.

相似矩阵的其它性质:

(1) 相 矩阵的秩相等;

(2) 相似矩阵的行列式相等;

(3) 相似矩阵具有相同的可逆性, 当它们可逆时,则它们的逆矩阵也相似。

二. 合同矩阵 :

1.定义:同矩阵:设A,B是两个n阶方阵,若存在可逆矩阵C,使得则称 方阵A与B合同,记作

线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。一般在线代问题中,研究合同矩阵的场景是在二次型中二次型用的矩阵是 实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。

2.性质:

合同关系是一个等价关系,就是说满足:1、 反身性:任意矩阵都与其自身合同;2、 对称性: A合同 B,则可以推出 B合同于 A;3、 传递性: A合同于B,B合同于C,则可以推出 A合同 C;4、合同矩阵的 秩相同。

3.矩阵合同的主要判别法:

(1)B均为复数域上的n阶对称矩阵,则A与B在 复数域上合同 等价于A与B的秩相同.

(2)B均为实数域上的 n阶对称矩阵,则A与B在实数域上合同等价于A与B有相同的正、负惯性指数(即正、负的个数对应相等)。

参考资料

矩阵相似_百度百科合同矩阵_百度百科

本回答被网友采纳
第2个回答  推荐于2019-10-20

矩阵相似与矩阵合同具体的不同点在于:

    矩阵相似的例子中,P-1AP=B;针对方阵而言;秩相等为必要条件;本质是二者有相等的不变因子;可看作是同一线性变换在不同基下的矩阵;矩阵相似必等价,但等价不一定相似。

    矩阵合同的例子中,CTAC=B;针对方阵而言;秩相等为必要条件;本质是秩相等且正惯性指数相等,即标准型相同;可通过二次型的非退化的线性替换来理解;矩阵合同必等价,但等价不一定合同。

    总结:矩阵的相似和矩阵的合同都是由线性空间中坐标系的转换引起的。我们在线性空间中定义矩阵和向量的乘法,并将矩阵理解成线性空间中“运动”的施加,变换坐标系之后,同一个“运动”在不同坐标系下是相似的关系。我们在线性空间中定义向量的内积(或者说双线性型),同一个双线性型运算在不同坐标系下相差合同矩阵。之所以要换坐标系,就是为了在最简单的坐标系下看清问题的本质!

矩阵相似与矩阵合同的各自概况:

    矩阵相似的概况:设A,B都是n阶矩阵,若存在可逆矩阵P,使P^(-1)AP=B,则称B是A的相似矩阵, 并称矩阵A与B相似,记为A~B。对进行运算称为对进行相似变换,称可逆矩阵为相似变换矩阵。

    矩阵相似的判断方法:判断两个矩阵是否相似的辅助方法,首先,判断特征值是否相等;其次,判断行列式是否相等;判断迹是否相等;最后判断秩是否相等。

    矩阵合同的概况:在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵A和B是合同的,当且仅当存在一个可逆矩阵 C,使得C^TAC=B ,则称方阵A合同于矩阵B.一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。

本回答被网友采纳
第3个回答  2020-06-19
矩阵相似与矩阵合同具体的不同点在于:
矩阵相似的例子中,P-1AP=B;针对方阵而言;秩相等为必要条件;本质是二者有相等的不变因子;可看作是同一线性变换在不同基下的矩阵;矩阵相似必等价,但等价不一定相似。
矩阵合同的例子中,CTAC=B;针对方阵而言;秩相等为必要条件;本质是秩相等且正惯性指数相等,即标准型相同;可通过二次型的非退化的线性替换来理解;矩阵合同必等价,但等价不一定合同。
总结:矩阵的相似和矩阵的合同都是由线性空间中坐标系的转换引起的。我们在线性空间中定义矩阵和向量的乘法,并将矩阵理解成线性空间中“运动”的施加,变换坐标系之后,同一个“运动”在不同坐标系下是相似的关系。我们在线性空间中定义向量的内积(或者说双线性型),同一个双线性型运算在不同坐标系下相差合同矩阵。之所以要换坐标系,就是为了在最简单的坐标系下看清问题的本质!
矩阵相似与矩阵合同的各自概况:
矩阵相似的概况:设A,B都是n阶矩阵,若存在可逆矩阵P,使P^(-1)AP=B,则称B是A的相似矩阵, 并称矩阵A与B相似,记为A~B。对进行运算称为对进行相似变换,称可逆矩阵为相似变换矩阵。
矩阵相似的判断方法:判断两个矩阵是否相似的辅助方法,首先,判断特征值是否相等;其次,判断行列式是否相等;判断迹是否相等;最后判断秩是否相等。
矩阵合同的概况:在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵A和B是合同的,当且仅当存在一个可逆矩阵 C,使得C^TAC=B ,则称方阵A合同于矩阵B.一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。
第4个回答  2020-05-22
矩阵相似的例子中,P-1AP=B;针对方阵而言;秩相等为必要条件;本质是二者有相等的不变因子;可看作是同一线性变换在不同基下的矩阵;矩阵相似必等价,但等价不一定相似。
2. 矩阵合同的例子中,CTAC=B;针对方阵而言;秩相等为必要条件;本质是秩相等且正惯性指数相等,即标准型相同;可通过二次型的非退化的线性替换来理解;矩阵合同必等价,但等价不一定合同。

矩阵相似与矩阵合同有什么区别
一、应用不同 1、矩阵相似:利用矩阵对角化计算矩阵多项式;利用矩阵对角化求解线性微分方程组;利用矩阵对角化求解线性方程组。2、矩阵合同:空间曲面的一般形式化成我们熟知的空间曲面的研究有帮助。二、判别方式不同 1、矩阵相似:判断特征值是否相等;判断行列式是否相等;判断迹是否相等;判断秩是否相等。

矩阵相似与矩阵合同有什么区别
区别一:定义不同 矩阵相似是指两个矩阵具有相同的大小和形状,并且它们之间存在一个相似变换矩阵,通过该矩阵可以将一个矩阵化为另一个矩阵的对角形式。而矩阵合同则是指两个方阵存在一种等价关系,满足某些特定的条件,比如它们的行列式值相等。区别二:性质不同 相似矩阵具有一些特殊的性质,如它们的特...

什么是矩阵相似与矩阵合同?
矩阵相似与矩阵合同具体的不同点在于:矩阵相似的例子中,P-1AP=B;针对方阵而言;秩相等为必要条件;本质是二者有相等的不变因子;可看作是同一线性变换在不同基下的矩阵;矩阵相似必等价,但等价不一定相似。2. 矩阵合同的例子中,CTAC=B;针对方阵而言;秩相等为必要条件;本质是秩相等且正惯性指...

矩阵的等价相似和合同三者有何区别
1、概念不同 矩阵等价指的是只有秩相同,矩阵合同指的是秩和正负惯性指数相同,矩阵相似指的是秩,正负惯性指数,特征值均相同),矩阵亲密关系的一步步深化。2、关系不同 相似矩阵必为等价矩阵,但等价矩阵未必为相似矩阵 ,PQ=EPQ=E 的等价矩阵是相似矩阵。合同矩阵必为等价矩阵,等价矩阵未必为合同...

矩阵等价,相似,合同之间的区别和联系
一、矩阵等价、相似和合同之间的区别:1、等价,相似和合同三者都是等价关系。2、矩阵相似或合同必等价,反之不一定成立。3、矩阵等价,只需满足两矩阵之间可以通过一系列可逆变换,也即若干可逆矩阵相乘得到。4、矩阵相似,则存在可逆矩阵P使得,AP=PB。5、矩阵合同,则存在可逆矩阵P使得,P^TAP=B。6...

合同矩阵和相似矩阵的区别?
矩阵相似与矩阵合同具体的不同点在于:1、矩阵相似的例子中,P-1AP=B,针对方阵而言,秩相等为必要条件,本质是二者有相等的不变因子,可看作是同一线性变换在不同基下的矩阵,矩阵相似必等价,但等价不一定相似。2、矩阵合同的例子中,CTAC=B,针对方阵而言,秩相等为必要条件,本质是秩相等且正...

合同矩阵和相似矩阵有什么区别
(1)因为合同必等价,所以,若两个矩阵的秩不相同,则它们不是合同的。若存在可逆矩阵C, 使得 C'AC = B, 则A与B合同 , 这是从定义的角度考虑。(2)若给两个显式矩阵,判断它们是否合同,只能把它们化成标准形, 比较它们的正负惯性指数。正负惯性指数分别相等则合同,否则不合同。判断矩阵相似 ...

矩阵的等价相似和合同三者有何区别
矩阵等价:同型矩阵而言,般与初等变换有关,秩是矩阵等价的不变量,同次,两同型矩阵相似的。矩阵相似:针对方阵而言。秩相等是必要条件,本质是二者有相等的不变因子。矩阵合同:针对方阵而言,一般是对称矩阵,秩相等是必需条件,本质是秩相等且存在惯性指数相等,即标准型同。3、它们的充分必要条件不...

矩阵的合同和相似能直观看出来吗?
合同指的是两个矩阵的正定性一样,也就是说,两个矩阵对应的特征值符号一样 相似是指两个矩阵特征值相等。分别计算这两个矩阵的特征值,特征值相等的话那么这两个矩阵就是相似的,而两个矩阵相似了就一定是合同的

矩阵的等价相似和合同三者有何区别
1、等价(只有秩相同)–>合同(秩和正负惯性指数相同)–>相似(秩,正负惯性指数,特征值均相同),矩阵亲密关系的一步步深化。2、相似矩阵必为等价矩阵,但等价矩阵未必为相似矩阵 ,PQ=EPQ=E 的等价矩阵是相似矩阵。3、合同矩阵必为等价矩阵,等价矩阵未必为合同矩阵,正惯性指数相同的等价矩阵是...

相似回答