1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+...+50)
1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+50) 要方法(最好是...
因此1+2+3+……+50=(1+50)*50\/2 那么1\/(1+2+3+...+50)=1\/【(1+50)*50\/2】,简化为,1\/(1+2+3+...+50)=2*1\/(51*50)1\/(1+2+3+...+50)=2*(1\/50-1\/51),同理 1\/(1+2+3+...+49)=2*(1\/49-1\/50)前面的式子全部写成这种形式,接着全部提取一个...
1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...1\/(1+2+3+...99+100)
注意观察,第 N 个加式可以表述成:1\/(1 + 2 + 3 + ... + n)= 1\/[n(n + 1)\/2]= 2\/[n(n + 1)]= 2[1\/n - 1\/(n + 1)]那么有:1\/1 + 1\/(1 + 2) + 1\/(1 + 2 + 3) + ... + 1\/(1 + 2 + 3 + ... + 100)= 1 + 2\/(2*3) + 2\/(3*4) ...
1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+4+…+50)=小学解法
所以,1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+4+…+50)= 2×(1 - 1\/2) + 2×(1\/2 - 1\/3) + 2×(1\/3 - 1\/4) + 2×(1\/4 - 1\/5) + …… + 2×(1\/50 - 1\/51)= 2×(1 - 1\/2 + 1\/2 - 1\/3 + 1\/3 - 1\/4 + 1\/4 - 1\/5 + …… +...
1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+50)=?
所以每一项通式为2\/[n(n+1)]=2[1\/n-1\/(n+1)]原式=2{1\/1-1\/2+1\/2-1\/3+1\/3-4-1\/4+……+1\/50-1\/51}=2(1-1\/51)=100\/51
1\/(1+2) +1\/(1+2+3) + 1\/(1+2+3+4) +...+1\/(1+2+3+...+2009) 怎么计算...
整个运算的每两个加号之间的为一个项,则总共有2008个项,其普通式为An,接下来我们先计算An的普通式,因为括弧里为分母,分母的普通式为n(n+1)\/2,求倒则为An=2\/n(n+1),而2\/n(n+1)=2(1\/n - 1\/(n+1)),于是原式即为求普通式为An=2(1\/n - 1\/(n+1))(n>1),共有...
用简便方法计算:1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)...1\/(1+2+3+4...2...
1\/(1+2+3+...+n)=1\/[n(n+1)\/2]=2\/[n(n+1)]=2[1\/n-1\/(n+1)]1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)...1\/(1+2+3+4...2004)=2(1\/2-1\/3+1\/3-1\/4+...+1\/2004-1\/2005)=2(1\/2-1\/2005)=1-2\/2005 =2003\/2005 ...
1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+...10)=
你应该知道1+2+3+……+50,这种题怎么算吧,公式:(第一项+最后一项)*项数\/2 因此1+2+3+……+50=(1+50)*50\/2 那么1\/(1+2+3+...+50)=1\/【(1+50)*50\/2】,简化为,1\/(1+2+3+...+50)=2*1\/(51*50)1\/(1+2+3+...+50)=2*(1\/50-1\/51),同理 1\/(1...
1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+…100)=
第二种:因为:1+2=2*3\/2 1+2+3=3*4\/2 1+2+3+4=4*5\/2 1+2+3+……+100=100*101\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+2006)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*...
...1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+L+100)的计算过程...
如下:1+2+3+...+n=n(n+1)\/2 1\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 性质 若已知一个...
初一数学题1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100...
因为:1\/(1+2)=1\/3=2*(1\/2-1\/3)1\/(1+2+3)=1\/6=2*(1\/3-1\/4)1\/(1+2+3+4)=1\/10=2*(1\/4-1\/5)...同理 1\/(1+2+3+...+100)=1\/5050=2*(1\/100-1\/101)所以 1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=1+2*【(1\/2-1...