1+2+3.......+N等于多少?

如题所述

1+2+3.......+N=(n+1)n/2

解题过程:

1+2+3+4+5......+n

=(n+1)+(2+n-1)+(3+n-2)+……(n/2+n/2+1)【首尾相加】

=(n+1)n/2【首尾相加得到的数相等,此时共有n/2个组合,因此结果为其乘积】

扩展资料

这是典型的等差数列求和公式,等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列求和公式(字母):

设首项为  , 末项为  , 项数为  , 公差为  , 前  项和为  , 则有:①  ;

②  ;

③  ;

④  , 其中 ..

参考资料:百度百科-等差数列求和公式

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2019-09-01

1+2+3.......+N等于(n+1)n/2

1+2+3+4+5......+n

=(n+1)+(2+n-1)+(3+n-2)+……(n/2+n/2+1)【首尾相加】

=(n+1)n/2【首尾相加得到的数相等,此时共有n/2个组合,因此结果为其乘积】

拓展资料

简便计算是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很复杂的式子变得很容易计算出得数。

减法1

a-b-c=a-(b+c)

减法2

a-b-c=a-c-b

除法1

a÷b÷c=a÷(b×c)

除法2

a÷b÷c=a÷c÷b

本回答被网友采纳
第2个回答  推荐于2017-10-13
这是一个等差数列求和问题。1+2+3+······+n=n(n+1)/2.
如果是初中学生可以这样做:
s=1+2+3+······+n…①
则s=n+······+3+2+1…②
①+②得2s=(n+1)+······+(n+1)+(n+1)+(n+1)=n(n+1)
所以s=n(n+1)/2.本回答被提问者采纳
第3个回答  2008-10-26
利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n

2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n

各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)

n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)

n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1

n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2

3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)

1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
第4个回答  2008-11-09
n(n+1)(2n+1)]/6

著名公式

祝1*1+2*2+3*3+.......+n*n为自然数平方求和。
求和公式为利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
1又1/2+2又1/4+3又1/8+L L+(n+1/2^n)
=(1+2+3+...+n)+(1/2+1/4+1/8+...+1/2^n)
=n(n+1)/2+(1/2^n-1)

1+1/(1+2)+1/(1+2+3)+...+1/(1+2+3+...+n)
1+2+3+....+n=n(n+1)
1/(1+2+3+...+n)=1/n(n+1)=1/n-1/(n+1)
所以
原式=1+1/1-1/2+1/2-1/3+1/3-1/4+....+1/n-1/(n-1)
=1+1+1/n
=2+1/n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n

各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)

n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)

n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1

n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2

3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)

1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 :[n(n+1)(2n+1)]/6 好运。

1+2+3...+N等于多少?
1+2+3...+N=(n+1)n\/2 解题过程:1+2+3+4+5...+n =(n+1)+(2+n-1)+(3+n-2)+……(n\/2+n\/2+1)【首尾相加】=(n+1)n\/2【首尾相加得到的数相等,此时共有n\/2个组合,因此结果为其乘积】

1+2+3+…+ n等于多少?
1+2+3+…+n=(1+n)×n\/2=n\/2+n²\/2。1、算式中的加数是等差数列,等差数列可以使用求和公式进行计算,等差数列的求和公式为:Sn=[n×(a1+an)]\/2。2、根据上述公式可以知道,项数为n,数列首项为1,数列末项为n,因此,1+2+3+…+n=(1+n)×n\/2=n\/2+n²\/2。

1+2+3+...+ n的公式?
1+2+3+...+n的公式是:1+2+3+...+n =(1+n)×n\/2 =n\/2+n²\/2 等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。相关性质:在有穷等差数列中,与首末两项距离相等的两项和相等。并...

1+2+3+...+n=?如何推倒
回答:设1+2+3+.......+n=a n+....+3+2+1=a 上下相加得

1+2+3...+n 化简,谢谢!
解:根据等差数列求和公式:和=(首项+末项)×项数÷2 可知1+2+...+n =n(n+1)\/2 (即2分之n乘(n+1) )望采纳,谢谢!

(1+2+3...+n)怎么简化?
1+2+3...+n =(1+n)+[2+(n-1)]+……=(n+1)+(n+1)+……=(n+1)(n\/2)=n(n+1)\/2

1+2+3+...+n=?
1+2+3+...+n=n(n+1)\/2

1+2+3...+ n=?
规律是:1+2+...+n=((n+1)\/2)*n。1+2+3=2*3=((3+1)\/2)*3=2*3。1+2+3+4+5=3*5 =((5+1)\/2)*5=3*5。1+2+3+4+5+6+7=4*7 =((7+1)\/2)*7=4*7。1+2+3+4+5+6+7+8+9=5*9 =((9+1)\/2)*9=5*9。性质:1、同号两数相加,取与...

1+2+3+...+n等于多少
1+2+3+...+n=n(n+1)\/2=n^2\/2+n\/2

1+2+3+...+n 公式
1+2+3+4+...+n=[(1+n)*n]\/2 这是等差数列公式

相似回答