∫arctanxdx/x^2 上限是无穷,下限是1. 怎么求啊

如题所述

求定积分:[1,+∞]∫arctanxdx/x²
解:令u=arctanx,则x=tanu,dx=du/cos²u,x=1时u=π/4;x→+∞时u=π/2;
故原式=[π/4,π/2]∫udu/(tan²ucos²u)=[π/4,π/2]∫udu/sin²u=[π/4,π/2][-∫udcotu]
=[π/4,π/2][-ucotu+∫cotudu]=[π/4,π/2][-ucotu+∫(cosu/sinu)du]
=[π/4,π/2][-ucotu+lnsinu]=(π/4)-ln(√2/2)=(π/4)+(1/2)ln2.
温馨提示:内容为网友见解,仅供参考
第1个回答  2011-12-02
let
tana = x
(seca)^2 da = dx
x= 无穷, a = π/2
x=1, a=π/4
∫(arctanx / x^2 ) dx
= ∫ a da a =(π/4,π/2)
= [a^2/2] a =(π/4,π/2)
= 3π^2/16
相似回答