巧算:(1/2)+(1/2+1/3)+(1/4+2/4+3/4)+...+(1/50+2/50+3/20+...+48/50+49/50)怎么算啊?

急需啊!今天就要用!只要你答得快又准,立马选你为最佳答案,好心人帮帮忙啊!除号用÷,别用/,容易混
对于一个自然数n,如果能找到自然数a和b使n=a+b+ab,则称n是一个好数,例如:3=1*=+1+1*1,则3是一个好数,在1到20里有几个好数?没人啊!

/2+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/50+2/50+3/50+...+48/50+49/50)
解原式=1/2+1+3/2+2+...+50/2
=1/2+2/2+3/2+...+50/2
=(1+2+…+50)/2
=1275/2
用到1+2+…+n=(1+n)n/2这个公式追问

只有你一个回答,好吧,我认输

温馨提示:内容为网友见解,仅供参考
无其他回答

1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)...+(1\/50+2\/50...+48\/50+49\/50)
=(n-1)\/2 所以原式=1\/2+2\/2+3\/2+……+49\/2 =(1+2+……+49)\/2 =49*50\/2\/2 =612.5 参考资料:仅供参考,祝您学习进步!

计算:1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/50+2\/50+3\/5
1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/n+2\/n+3\/n+...+(n-1)\/n) n取值2--50 化简为1\/2+(1\/3+1-1\/3)+(1\/4+2\/4+1-1\/4)+...(1\/50+2\/50+3\/50+...24\/50+25\/50+1-24\/50+...+1-3\/50+1-2\/50+1-1\/50)综合分析:当n为偶数时,其各项的和=...

1+1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/50+2\/50+...+49\/50)等于多少...
解:原式 =1+1\/2+1+6\/4+……+49×25\/50 =1+1\/2+2\/2+3\/2+……+49\/2 =1+(1+2+3+……+49)\/2 =1+(1+49)×49÷2\/2 =1+50×49÷4 =613.5

1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...(1\/50+2\/50+3\/50+...+49\/50)的简便...
找出通项为(n-1+1)*(n-1)\/2n即为(n-1)\/2 然后用等差公式=49*50\/4=1225\/2

1+1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/50+2\/50+...+49\/50) 简算
因为(1+2+...+(n-1))\/n=[n(n-1)\/2]\/n=(n-1)\/2 所以1+1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/50+2\/50+...+49\/50)=1+1\/2+2\/2+...+49\/2 =1+(1+2+3+...+49)\/2 =1+49*50\/2*1\/2 (1+2+……+n=n(n+1)\/2)=1+1225\/2 =1227\/2 ...

1+1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/50+2\/50+...+49\/50)
所以1\/2=(2-1)\/2=1\/2 1\/3+2\/3=(3-1)\/2=2\/2 1\/4+2\/4+3\/4=(4-1)\/2=3\/2 ……1+1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+...+(1\/50+2\/50+...+49\/50)=1+1\/2++2\/2+3\/2+4\/2+……+50\/2 =1+(1+2+……+50)\/2 =1+(50*51\/2)\/2 =1+1275\/2 ...

1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+……+(1\/50+2\/50+3\/50+……+49\/50) 十 ...
原式=1\/2+(1\/3+2\/3)+...+(1+2+...+n-1)\/n =1\/2+(1\/3+2\/3)+...+(n-1)n\/(2n)=1\/2+(1\/3+2\/3)+...+(n-1)\/2 =(1+2+...+49)\/2 =(1+49)*49\/4 =1225\/2;

1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+(1\/5+2\/5+3\/5+4\/5)+……+(1\/50+2\/50...
仔细观察,这个是一个等差数列 第一项1\/2 第二项1 第三项3\/2 第四项2 .……最后一项49\/2 一共49项,结果等于49×(1\/2+49\/2)\/2=1225\/2=612.5

1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+……+(1\/50+2\/50+……49\/50)等于几?
原式 =1\/2+1+(1+1\/2)+(1+1)+(1+1\/2+1)+.+(1+1+1+.+1\/2+.+1+1)=1\/2*24+1*(1+1+2+2+3+3+4+4+5+5+6+6+.+24+24)=12+600 =612 自己心算的结果可能不对,思路就是这样

1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+(1\/5+2\/5+3\/5+4\/5)+...
1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+……(1\/50+2\/50+…+48\/50+49\/50)= 先总结一下,凡是分母是奇数的,如(1\/3+2\/3)=1 (1\/5+2\/5+3\/5+4\/5)=2,都是整数,且等于(奇数-1)\/2 以此类推,(1\/49+2\/49+…+48\/49)= 24 分母是偶数的,如1\/2=0.5,(1\/4+2\/4+3...

相似回答
大家正在搜