一道高中数学竞赛题目,求解。
题目描述如下:已知:△ABC为圆内接三角形,D为BC中点,FG∥BC,∠ACG=90°。求证:∠AEC=∠CEG。解题思路:1. 由于D为BC中点,且FG∥BC,根据中位线定理,我们可以得到FG是△ABC的中位线,因此F和G分别是AB和AC的中点。2. 由于FG∥BC,根据平行线的性质,我们知道∠AEG和∠ACG是同位角,因此...
求解一道高中数学题
本题计算过程如下:log3 9^5 =log3 (3^2)^5 =log3 3^10 =10 用到的公式有:loga a=1 loga a^t=t,(a^n)^m=a^m*n
一道高中数学题 求解 求解析 要过程 谢谢啊!
cos∠APB=3分之1,所以sin∠APB=2倍根号2\/3 根据正弦定理有:AB\/sin∠APB=2R。所以2R=4\/(2倍根号2\/3)=3倍根号2。所以R=3倍根号2\/2 (你可以过B做直径,显而易见)∵AB为⊙O的直径,(1)连接BC,∴∠ACB=90°,又∵DC切⊙O于C点,∴∠DCA=∠B,∵DC⊥PE,∴Rt△ADC∽Rt△ACB...
【高分】问两道高中数学题,要求过程
1.由韦达定理,得:x1+x2=2a x1*x2=(a^2-4a+4)=(a-2)^2≥0 a=2时,原方程为:x^2-4x+4-8+4=0 x^2-4x=0,x=0或x=4 |0|+|4|=4≠3,所以a≠2 所以x1*x2=(a-2)^2>0 所以x1,x2同号 1)x1>0,x2>0时 x1+x2=3 2a=3 a=3\/2 2)x1<0,x2<0时 -x1-x2...
一道高中数学题求解(要过程)
学过导数的话, 就很简单.结果是 a = -25 \/ 27 过程如下:设f(x) = x^3 - 4x^2 + 5x f ' (x) = 3x^2 - 8x + 5 = 0 => x = 1或 x = 5\/3 因此, f (x)单调递增区间为 (-∞, 1] ∪ [5\/3, ∞)f(x) 单调递减区间为[1, 5\/3]f(1) = 2 f(5\/3) = 50...
求解一道高中数学指数方程问题!!!急, 在线等!!
请看图片,重要步骤 设y=2^x 原式变成y^2-2ky-k=0 在变 y^2-2ky+k^2=k^2+k 〖(y-k)〗^2=k^2+k y-k=±√(k^2+k)y=k±√(k^2+k)因为y=2^x为正(若考虑虚数就另外算)y= k+√(k^2+k)剩下的自己弄了
高中数学几何题求解。
解答过程:根据的圆心O在x轴正半轴上 先设圆心(x,0)x>0 根据半径为2的圆,直线3x-4y+4=0与圆相切得:圆心到直线3x-4y+4=0的距离为2解出x 从而得到了圆心坐标(2,0)所以圆的方程:(x-2)²+y²=4 再讨论若过Q(0,-3) 的直线I斜率不存在 则方程为x=0 与圆的...
求一道高中数学题的解法(要有过程)
构造函数f(x)=x^2+ax+2b;数形结合,可知道:f(0)>0;即2b>0;f(1)<0;即1+a+2b<0;f(2)>0;即4+2a+2b>0;再利用线性规划的知识:画出以上二元一次方程组所对应的可行域;而(b-2)\/(a-1)则是连接可行域内的点(a,b)与点(1,2)的直线的斜率 从而知道(b-2)\/(a-1)...
求解一道高中数学题目:题目如图示 。
上半部分是半球,下半部分是圆锥。半球体积 = 1\/2×4\/3πR³ = 2\/3×π×3³ = 18π 圆锥高h=√(5²-3²)=4 圆锥体积 = 1\/3πR²h = 1\/3×π×3²×4 = 12π 总体积 = 18π+12π=30π ...
求解一道高中数学问题
x2^2-y2^2=t 两式相减,得(x1-x2)\/(y1-y2)=(y1+y2)\/(x1+x2)=y0\/x0 所以直线MN斜率为 ( y1-t2)\/(x1-x2)=x0\/y0 所以直线PQ的斜率为-y0\/x0=(0-y0)\/(x-x0)解得 x=2x0,所以 FP=x-c=2x0-根号(2t)而MN由双曲线的第二定义得 MN=(根号2)*(x1+x2-...