定积分的几何定义:可以理解为在 Oxy坐标平面上,由曲线y=f(x)与直线x=a,x=b以及x轴围成的曲边梯形的面积值(一种确定的实数值)
那么定积分的几何意义知此积分计算的是cosx函数图像在[0,2π]的面积, x轴之上部分为正,x轴之下部分为负,根据cosx在[0, 2π]区间的图像可知,正负面积相等,因此其代数和等于0。参考下图:
本回答被网友采纳利用定积分的几何意义说明:
由定积分的几何意义知,表示由余弦曲线y=cosx,x∈R在[-,]上的一段与x轴所围图形的面积.同样,表示由正弦曲线y=sinx,x∈R在[0,π]上的一段与x轴所围图形的面积,而余弦曲线y=cosx可以通过将正弦曲线y=sinx沿x轴向左平行移动个单位长度而得到,所以由它们在各自相应区间上与x轴所围图形的...
利用定积分的几何意义
利用定积分的几何意义:是函数y=f(x)的曲线,与其定义域的区间[a,b],即a≤x≤b所围成平面图形的面积。定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有...
定积分几何意义说明
定积分是上下限确定了的不定积分,如果说几何意义的话,重点在积这个字,累积的意思,求面积可以对线段进行累积,积线成面,求体积可以对平面进行累积,积面成体,所以有时候计算三重积分我们会确定一个维度的范围,对另外两个维度上组成的面进行积分计算。定积分的几何意义是被积函数与坐标轴围成的面...
利用定积分的几何意义证明:
解:定积分的几何意义是函数y=f(x)的曲线,与其定义域的区间[a,b],即a≤x≤b所围成平面图形的面积。本题中,f(x)=cosx,a=0,b=2π。考察y=cosx在[0,2π]的变化,利用y=cosx的对称性,可知y=cosx与x=0、x=2π所围成的平面图形的面积值为0,故,∫(0,2π)cosxdx=0。供参考。
定积分的几何意义是什么 定积分的几何意义是怎样
1、定积分的几何意义是被积函数与坐标轴围成的面积,x轴之上部分为正,x轴之下部分为负,根据cosx在[0, 2π]区间的图像可知,正负面积相等,因此其代数和等于0。2、定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。3、这里应注意定积分与不定积分之间的关系:若定积分存在,则...
利用定积分的几何意义说明:
定积分的几何定义:可以理解为在 Oxy坐标平面上,由曲线y=f(x)与直线x=a,x=b以及x轴围成的曲边梯形的面积值(一种确定的实数值)那么定积分的几何意义知此积分计算的是cosx函数图像在[0,2π]的面积,x轴之上部分为正,x轴之下部分为负,根据cosx在[0,2π]区间的图像可知,正负面积相等,因此...
定积分的几何意义是什么?
定积分的几何意义:从几何上看,如果在区间[a,b]上函数f(X)连续且恒有f(X)≥0,那么定积分∫(a,b)f(X)dX表示由直线X=a,Ⅹ=b,y=0和曲线y=f(X)所围成的曲边梯形(图中阴影部分)面积。若对应的曲边梯形位于X轴下方时,定积分的值取负值,且等于曲边梯形的面积的相反数。B是积分的...
利用定积分的几何意义证明:
y=√[1-(x-1)²]可以转化为 (x-1)²+y²=1 (y≥0)这是一个以(1,0)为圆心,半径为1的上半圆。根据定积分的几何意义,左边的定积分是这个上半圆的面积,右边的定积分是这个上半圆的左半部分的面积,显然,半圆面积等于1\/4圆面积的2倍,所以,积分等式成立。
定积分的几何意义是什么
面积,物体占据面积。1、面积:定积分可以用来计算曲线下面积。函数在区间a,b上非负,那么定积分表示的就是由曲线y等于fx与直线x等于a,x等于b及x轴围成的曲边梯形的面积。2、物体占据的面积:函数在区间a,b上为正,那么定积分表示的就是由曲线y等于fx与直线x等于a,x等于b及x轴围成的曲边...
用定积分的几何意义说明下列等式。。。急~~~
定积分的几何意义是:定积分是被积函数与横轴所围面积的代数和。面积在轴上方则为正,在下方则为负值。对于sinx而言,在被积区间内函数面积在上下方面积相等。所以代数和为0