对于z=f(x,y),曲面面积为A=∫∫D dA=∫∫D √[1+(əf/əx)²+(əf/əy)²]dxdy
锥面z=√(x²+y²)被圆柱面x²+y²=2x所割则积分区域D为:0≤x≤2,-√(2x-x²)≤y≤√(2x-x²)
化为极坐标为:0≤θ≤2π,0≤r≤2cosθ
锥面方程为:z=r;
柱面方程为:r=2cosθəf/əx=x/r=cosθ,əf/əy=y/r=sinθ(əf/əx)²+(əf/əy)²=cos²θ+sin²θ=1∴A=∫∫D √[1+(əf/əx)²+(əf/əy)²]dxdy=∫∫D √[1+1] rdrdθ=√2∫[∫rdr]dθ=√2∫[r^2/2]dθ=√2∫[2cos²θ]dθ=√2∫[1+cos2θ]dθ=√2/2∫[1+cos2θ]d(2θ)=√2/2[(2θ+sin2θ)]=√2/2[4π-0]=2√2π
扩展资料:
以原点为顶点的锥面方程是关于 的齐次方程,反之,一个含 的齐次方程 的图形总是顶点位于原点的锥面。
事实上,设 是曲面 上的一点(但不是原点)。即 ,则直线OP上的任意一点M的坐标为
一定也适合方程 ,因为这里的n是所给齐次方程的次数,这表示直线OP上任意一点都在曲面 上,因此该曲面是由过原点的直线构成的,根据定义,这曲面是以原点为顶点的锥面。
一直母线沿着曲导线运动,且始终通过定点(导点)时,所得曲面称为锥面。与柱面相似,锥面是以垂直于轴线的正截面与锥面的交线形状来命名的。若交线的形状为圆,称为圆锥面;若为椭圆,称为椭圆锥面。
若椭圆锥面的轴线与锥底面倾斜时,称为斜椭圆锥面。斜椭圆锥面的正面投影是一个三角形,它与正圆锥面的正面投影的主要区别在于:此三角形不是等腰三角形,三角形内有两条点划线,其中一条与锥顶角平分线重合,是锥面轴线,另一条是圆心连线。
斜椭圆锥面的水平投影是一个反映底圆(导线)实形的圆以及与该圆相切的两转向轮廓线。斜椭圆锥面的侧面投影是一个等腰三角形。
对于锥面,有两种画法:
①在其反映轴线实长的视图中画若干条有疏密之分的直素线,在反映锥底圆弧实形的视图中则画若干条均匀的直素线;
②在锥面的各视图巾均画出若干条示坡线。注意锥面示坡线方向应指向锥顶。
参考资料:百度百科——锥面
方法一
对于z=f(x,y),曲面面积为
A=∫∫D dA=∫∫D √[1+(əf/əx)²+(əf/əy)²]dxdy
锥面z=√(x²+y²)被圆柱面x²+y²=2x所割
则积分区域D为:0≤x≤2,-√(2x-x²)≤y≤√(2x-x²)
化为极坐标为:0≤θ≤2π,0≤r≤2cosθ
锥面方程为:z=r;柱面方程为:r=2cosθ
əf/əx=x/r=cosθ,əf/əy=y/r=sinθ
(əf/əx)²+(əf/əy)²=cos²θ+sin²θ=1
∴A=∫∫D √[1+(əf/əx)²+(əf/əy)²]dxdy
=∫∫D √[1+1] rdrdθ
=√2∫[∫rdr]dθ=√2∫[r^2/2]dθ=√2∫[2cos²θ]dθ=√2∫[1+cos2θ]dθ
=√2/2∫[1+cos2θ]d(2θ)=√2/2[(2θ+sin2θ)]=√2/2[4π-0]=2√2π
求不复制
等等
我看到啦
追答方法一的方法类似,只需把数值换一下。
本回答被提问者采纳求锥面z=√(x^2+y^2)被柱面z^2=2x所截曲面面积
锥面z=√(x²+y²)被圆柱面x²+y²=2x所割则积分区域D为:0≤x≤2,-√(2x-x²)≤y≤√(2x-x²)化为极坐标为:0≤θ≤2π,0≤r≤2cosθ 锥面方程为:z=r;柱面方程为:r=2cosθəf\/əx=x\/r=cosθ,əf\/əy=y\/r=si...
求锥面z=√(x^2+y^2)被柱面z^2=2x所截曲面面积。请问图像是什么样...
恕我无能呀!
求锥面z=√(x^2+y^2)被柱面z^2=2x所割下部分的曲面面积
求锥面z=√(x^2+y^2)被柱面z^2=2x所割下部分的曲面面积是√2π。由z=√(x^2+y^2)和z^2=2x可得曲面在xoy平面的投影为Dxy:(x-1)^2+y^2≤1 dz\/dx=x\/√(x^2+y^2),dz\/dy=y\/√(x^2+y^2)√((dz\/dx)^2+(dz\/dy)^2+1)=√2=>dS=√2dσxy ∫∫(∑)dS=∫∫(...
求锥面z=√(x^2+y^2)被柱面z^2=2x所割下部分的曲面面积 答案是根2乘 ...
锥面方程为:z=r;由z=√(x^2+y^2)和z^2=2x可得曲面在xoy平面的投影为Dxy:(x-1)^2+y^2≤1 dz\/dx=x\/√(x^2+y^2),dz\/dy=y\/√(x^2+y^2)√((dz\/dx)^2+(dz\/dy)^2+1)=√2=>dS=√2dσxy ∫∫(∑)dS=∫∫(Dxy)√2dσxy=√2*π*1^2=√2π 计算曲面的面积...
...下(x^2+y^2)被柱面z^2=2x所割下部分曲面的面积
先画草图,再求积分就行,答案如图所示
求锥面z=根号(x^2+y^2)被圆柱面x^2+y^2=2x割下部分的曲面面积(是曲面积 ...
锥面z=√(x²+y²)被圆柱面x²+y²=2x所割 则积分区域D为:0≤x≤2,-√(2x-x²)≤y≤√(2x-x²)化为极坐标为:0≤θ≤2π,0≤r≤2cosθ 锥面方程为:z=r;柱面方程为:r=2cosθ əf\/əx=x\/r=cosθ,əf\/əy=y\/...
求园锥面z=根号(x^2+y^2),被柱面z^2=2x,所割下的那部分曲面的面积?
答案详见图片!
求锥面z=√ (x^2+y^2)与柱面z^2=2x所围立体在xoz面的投影.
做出xoz面,我们可以清楚的表示这个所求区域为(在z=x≥0之上的部分与z^2=2x所包含的区域的重叠部分)投影面积为S=∫dz∫dx=2\/3 注:由于没有带图,造成不便,希望楼主谅解.需要在不同的坐标系上分别画出锥面z=√ (x^2+y^2),与柱面z^2=2x,在xoz面的投影,然后再合在一起,找所需投影,...
求锥面Z=根号下X平方加Y平方被柱面Z平方=2X所割下部分的曲面面积...
同济六版 10-4, 2T S = √2π 见图。
求锥面Z=根号内X的平方加Y的平方被柱面x的平方+y的平方=2ax所割下部...
根号2乘以πa的平方,用投影法,将所求面积投影到XOY平面内。