已知A与B相似,求a,b的值及矩阵P,使P^-1AP=B

已知A与B相似,求a,b的值及矩阵P,使P^-1AP=B第七题

因为A与B相似,可以知道|A|=|B|,tr(A)=tr(B);

所以得到 6b+a=-5;4=6+b;计算得到a=7,b=-2 。

所以求得矩阵B:

因为矩阵A的特征多项式

所以A的特征值为 λ1=5,λ2=-1 ,然后求A得特征向量

当λ1=5时,矩阵A的特征方程

求得λ1=5的特征向量为ξ1=(1,1)T ;

当λ2=-1时,矩阵A的特征方程为

求得λ2=-1的特征向量为ξ2=(-2,1)T ;

所以存在可逆矩阵P1=(ξ1,ξ2);使得P1^-1AP1=C,其中C为对角矩阵

同样的因为矩阵B的特征多项式为

所以B的特征值为 λ1=5,λ2=-1 ,求B得特征向量。

当λ1=5时,矩阵B的特征方程为

求得λ1=5的特征向量为η1=(-7,1)T ;

当λ2=-1时,矩阵B的特征方程为

求得λ2=-1的特征向量为η2=(-1,1)T ;

所以存在可逆矩阵P2=(η1,η2);使得P2^-1BP2=C,其中C为对角矩阵。

因为矩阵A与矩阵B相似的对角矩阵C均为一样的,所以得到P1^-1AP1=P2^-1BP2;

化简得到 (P1P2)^-1A(P1P2)=B;所以存在可逆矩阵P=P1P2,使得P^-1AP=B;

即可逆矩阵P为

扩展资料:

相似矩阵所用到的性质

对于P^-1AP=B,设A,B和C是任意同阶方阵,则有:

若A与B相似,则有

两者的秩相等;两者的行列式值相等;两者的迹数相等;两者拥有同样的特征值,尽管相应的特征向量一般不同;两者拥有同样的特征多项式;两者拥有同样的初等因子。

参考资料来源:百度百科-相似矩阵

温馨提示:内容为网友见解,仅供参考
第1个回答  2017-06-04

相似矩阵有相同特征值、迹和行列式,则

1+3=6+b

|A|=3-8=|B|=6b+a

解得

a=7

b=-2


因此所求矩阵P=MN^(-1)

本回答被提问者和网友采纳
第2个回答  2021-04-21

简单计算一下即可,答案如图所示

相似回答