化为二次积分。
∫∫(x+y)dxdy=∫(0~1)dx∫(1~2) (x+y)dy=∫(0~1) (x+3/2)dx =1/2+3/2=2
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。
扩展资料:
几何意义
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
例如二重积分,其中,表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积
参考资料来源:百度百科-二重积分
本回答被网友采纳把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。你可以找一本高等数学书看看。
你这个题目积分区域中,x、y并不成函数关系,要是积分区域是由比如说1<=x<=2,y=f(x),y=g(x),所围成的话,那么就要先对y积分其中上下限就是f(x)、g(x),要看谁的图形在上谁就是上限,这时候的x就当做一个常数来看待。
扩展资料:
在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示,函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。
二重函数数值意义:
二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。
参考资料来源:百度百科-二重积分
本回答被网友采纳二重积分换元公式
二重积分的计算公式:ydxdy=重心纵坐标×D的面积。二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。
二重积分的计算公式是什么?
F(x,y)=∫ ∫ f(x,y) dx dydF(x,y)\/dx=∫f(x,y)dydf(x,y)\/dy=∫f(x,y)dx 【简介】:二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推...
二重积分的公式是什么,有什么性质呢
=(x^4\/8-x^6\/12)│ =1\/8-1\/12 =1\/24
谁能清楚的告诉我二重积分到底怎么算
二重积分计算方法:化为二次积分。1、直角坐标系中 当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,因此在直角坐标系下,面积元素dσ=dxdy,从而二重积分可以表示为,由此可以看出二重积分的值是被积函数和积分区域...
二重积分的计算方法
这个二重积分的具体数值便可以求解出来。二重积分的现实(物理)含义:面积×物理量=二重积分值;举例说明:二重积分的现实(物理)含义:二重积分计算平面面积,即:面积×1=平面面积;二重积分计算立体体积,即:底面积×高=立体体积;二重积分计算平面薄皮质量,即:面积×面密度=平面薄皮质量。
二重积分的计算
二重积分是多元函数在区域上的积分,它是一元积分的推广。二重积分的计算方法如下:1、直接法:直接将二重积分转化为定积分的形式进行计算。这种方法适用于被积函数比较简单的情况。极坐标法:将直角坐标系中的二重积分转化为极坐标系中的累次积分进行计算。这种方法适用于被积函数具有对称性或者周期性的...
2重积分怎么计算
二重积分的计算公式:ydxdy=重心纵坐标×D的面积。二重积分的计算方法主要有两种,分别是直角坐标系法与极坐标法,直角坐标这个方法对于所有的二重积分都适用,积分区域与被积函数中,两者只要有其一是X2+y2的类型,那么就可以酌情考虑使用极坐标法。主要方法是把二重积分化成二次积分,也就是把其中一个...
二重积分怎么用?
二重积分应用 在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。例如二重积分,其中,表示的是以上半球面为顶,半径为a...
二重积分的计算方法有哪些,各有什么性质?
性质1 函数和(差)的二重积分等于各函数二重积分的和(差),即 ∫∫[f(x,y)±g(x,y)]dσ=∫∫f(x,y)dσ±∫∫g(x,y)dσ 性质2 被积函数的常系数因子可以提到积分号外,即 ∫∫kf(x,y)dσ=k∫∫f(x,y)dσ (k为常数)性质3 如果在区域D上有f(x,y)≦g(x,y),则∫∫...
怎么算二重积分,需要注意哪几项?
1、对称性计算二重积分:当被积函数 integrand 是奇函数时,在对称于原点的区域内积分为0。被积函数或被积函数的一部分是否关於某个坐标对称,积分区间是否对称,如果可以就可以用对称性,只用积分一半再乘以2。2、奇偶性计算二重积分:当被积函数是偶函数时,在对称于原点的区域内积分为单侧积分的两倍...