根号(1+x平方)的积分怎么解

有没有简单的做法

解析如下:

(1)替换 x=tan t, -pi/2<t<pi/2
dx=sec^2 t dt

(2)根号(1+x^2)=根号(1+tan t^2)=sec t积分

=积分 sec^3 t dt
=积分 sec t sec^2 t dt
=积分 sec t d (tan t)

(3)分部积分      

=sec t * tan t - 积分 tan t * sec t tan t dt
=sec t * tan t - 积分 (sec^2 t -1) sec t dt
=sec t * tan t - 积分 sec^3 t dt + 积分 sec t dt

(4)左右两边都有  积分 sec^3 t dt,合并到左边
2 积分 sec^3 t dt =sec t tan t +ln|sec t+tant |

(5)积分 sec^3 t dt =1/2*[sec t tan t +ln|sec t+tant |]+C

(6)然后就得代会去,x=tan t, sec t= 根号(1+tan^2 t)=根号(1+x^2)
积分=1/2*[ x*根号(1+x^2)+ln|x + 根号(1+x^2)| ]+C

拓展资料

1、积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。

2、积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。

3、如果一个函数的积分存在,并且有限,就说这个函数是可积的。一般来说,被积函数不一定只有一个变量,积分域也可以是不同维度的空间,甚至是没有直观几何意义的抽象空间。如同上面介绍的,对于只有一个变量x的实值函数f,f在闭区间[a,b]上的积分记作

4、其中的  除了表示x是f中要进行积分的那个变量(积分变量)之外,还可以表示不同的含义。在黎曼积分中, 表示分割区间的标记;在勒贝格积分中,表示一个测度;或仅仅表示一个独立的量(微分形式)。一般的区间或者积分范围J,J上的积分可以记作 

5、如果变量不只一个,比如说在二重积分中,函数  在区域D上的积分记作  或者  

6、分部积分法是微积分学中的一类重要的、基本的计算积分的方法。

7、它的主要原理是利用两个相乘函数的微分公式,将所要求的积分转化为另外较为简单的函数的积分。根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂三指”。

8、分别代指五类基本函数:反三角函数、对数函数、幂函数、三角函数、指数函数的积分。

参考资料:百度百科:积分

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2019-09-30

根号(1+x平方)的积分的解法:

令x=tanα,则:√(1+x^2)=√[1+(tanα)^2]=1/cosα, dx=[1/(cosα)^2]dα。

sinα=√{(sinα)^2/[(sinα)^2+(cosα)^2]}=√{(tanα)^2/[1+(tanα)^2}
=x/√(1+x^2),

∴原式=∫{(1/cosα)[1/(cosα)^2]}dα

=∫[cosα/(cosα)^4]dα

=∫{1/[1-(sinα)^2]^2}d(sinα)。

再令sinα=u,则:

原式=∫[1/(1-u^2)^2]du

=(1/4)∫[(1+u+1-u)^2/(1-u^2)^2]du

=(1/4)∫[(1+u)^2/(1-u^2)^2]du+(1/2)∫[(1-u^2)/(1-u^2)^2]du+(1/4)∫[(1-u)^2/(1-u^2)^2]du

=(1/4)∫[1/(1-u)^2]du+(1/2)∫[1/(1-u^2)]du+(1/4)∫[1/(1+u)^2]du

=-(1/4)∫[1/(1-u)^2]d(1-u)+(1/4)∫[(1+u+1-u)/(1-u^2)]du
+(1/4)∫[1/(1+u)^2]d(1+u)

=(1/4)[1/(1-u)]-(1/4)[1/(1+u)]+(1/4)∫[1/(1-u)]du
+(1/4)∫[1/(1+u)]du

=(1/4)[1/(1-sinα)]-(1/4)[1/(1+sinα)]
-(1/4)∫[1/(1-u)]d(1-u)+(1/4)∫[1/(1+u)]d(1+u)

=(1/4){1/[1-x/√(1+x^2)]}-(1/4){1/[1+x/√(1+x^2)]}
-(1/4)ln|1-u|+(1/4)ln|1+u|+C

=(1/4)[1+x/√(1+x^2)-1+x/√(1+x^2)]/[1-x^2/(1+x^2)]
+(1/4)ln|1+sinα|-(1/4)ln|1-sinα|+C

=(1/4)[2x/√(1+x^2)]/[(1+x^2-x^2)/(1+x^2)]
+(1/4)ln[|1+x/√(1+x^2)|/|1-x/√(1+x^2)|]+C

=(1/2)x√(1+x^2)+(1/4)ln|[√(1+x^2)+x]/[√(1+x^2)-x]|+C

=(1/2)x√(1+x^2)+(1/4)ln|[√(1+x^2)+x]^2/(1+x^2-x^2)|+C

=(1/2)x√(1+x^2)+(1/2)ln|x+√(1+x^2)|+C

扩展资料:

积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。

积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。

通常意义

积分都满足一些基本的性质。以下的  在黎曼积分意义上表示一个区间,在勒贝格积分意义下表示一个可测集合。

线性

积分是线性的。如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。

保号性

如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。

作为推论,如果两个  上的可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。

参考资料:百度百科——积分

本回答被网友采纳
第2个回答  推荐于2019-10-04

解题方法如下:

令x=tanα,则:√(1+x^2)

=√[1+(tanα)^2]=1/cosα, 

dx=[1/(cosα)^2]dα.

sinα=√{(sinα)^2/[(sinα)^2+(cosα)^2]}

=√{(tanα)^2/[1+(tanα)^2}

=x/√(1+x^2),

∴原式=∫{(1/cosα)[1/(cosα)^2]}dα
=∫[cosα/(cosα)^4]dα
=∫{1/[1-(sinα)^2]^2}d(sinα).

再令sinα=u,则:

原式=∫[1/(1-u^2)^2]du

=(1/4)∫[(1+u+1-u)^2/(1-u^2)^2]du

=(1/4)∫[(1+u)^2/(1-u^2)^2]du+(1/2)∫[(1-u^2)/(1-u^2)^2]du
+(1/4)∫[(1-u)^2/(1-u^2)^2]du

=(1/4)∫[1/(1-u)^2]du+(1/2)∫[1/(1-u^2)]du+(1/4)∫[1/(1+u)^2]du

=-(1/4)∫[1/(1-u)^2]d(1-u)+(1/4)∫[(1+u+1-u)/(1-u^2)]du
+(1/4)∫[1/(1+u)^2]d(1+u)

=(1/4)[1/(1-u)]-(1/4)[1/(1+u)]+(1/4)∫[1/(1-u)]du
+(1/4)∫[1/(1+u)]du

=(1/4)[1/(1-sinα)]-(1/4)[1/(1+sinα)]
-(1/4)∫[1/(1-u)]d(1-u)+(1/4)∫[1/(1+u)]d(1+u)

=(1/4){1/[1-x/√(1+x^2)]}-(1/4){1/[1+x/√(1+x^2)]}
-(1/4)ln|1-u|+(1/4)ln|1+u|+C

=(1/4)[1+x/√(1+x^2)-1+x/√(1+x^2)]/[1-x^2/(1+x^2)]
+(1/4)ln|1+sinα|-(1/4)ln|1-sinα|+C

=(1/4)[2x/√(1+x^2)]/[(1+x^2-x^2)/(1+x^2)]
+(1/4)ln[|1+x/√(1+x^2)|/|1-x/√(1+x^2)|]+C

=(1/2)x√(1+x^2)+(1/4)ln|[√(1+x^2)+x]/[√(1+x^2)-x]|+C

=(1/2)x√(1+x^2)+(1/4)ln|[√(1+x^2)+x]^2/(1+x^2-x^2)|+C

=(1/2)x√(1+x^2)+(1/2)ln|x+√(1+x^2)|+C

扩展资料:

基本定义

设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分(indefinite integral)。

记作∫f(x)dx。

积分学(integral calculus)数学分析的分支学科。即研究各种积分(理论、计算和应用)以及它们之间的关系的学科。 积分学也是高等数学的基础学科之一。积分学的研究对象也是函数,其研究方法是另一类极限值的计算,牵涉到曲边形面积和体积的计算,其研究任务是积分的性质、法则和应用。同样由研究的函数是 一元和多元而分为 一元函数积分学和多元函数积分学。

本回答被网友采纳
第3个回答  推荐于2017-09-07

分部积分,当然三角换元也可以

本回答被提问者和网友采纳
第4个回答  2021-11-16

如图,如有错误还望指正

根号(1+x平方)的积分怎么解
解析如下:(1)替换 x=tan t, -pi\/2<t<pi\/2dx=sec^2 t dt (2)根号(1+x^2)=根号(1+tan t^2)=sec t积分 =积分 sec^3 t dt=积分 sec t sec^2 t dt=积分 sec t d (tan t)(3)分部积分 =sec t * tan t - 积分 tan t * sec t tan t dt=sec t * tan t - ...

根号(1+x平方)的积分怎么解
=x\/√(1+x^2),∴原式=∫{(1\/cosα)[1\/(cosα)^2]}dα=∫[cosα\/(cosα)^4]dα=∫{1\/[1-(sinα)^2]^2}d(sinα).再令sinα=u,则:原式=∫[1\/(1-u^2)^2]du =(1\/4)∫[(1+u+1-u)^2\/(1-u^2)^2]du =(1\/4)∫[...

根号(1+x^2) 积分
根号1+x^2 = 1+(tant)^2 =(sect)^2 y = sect sect积分得 [ln(1+sinx)-ln(1-sinx)]\/2+C secx不定积分方法复制:secx=1\/cosx ∫secxdx=∫1\/cosxdx=∫1\/(cosx的平方)dsinx =∫1\/(1-sinx的平方)dsinx 令sinx=t代人可得:原式=∫1\/(1-t^2)dt=1\/2∫[1\/(1-t)+1\/(1+...

√(1+x²)的不定积分
∫√(1+x^2 )dx=1\/2x√(1+x²)-1\/2ln|x+√(1+x²)|+c。c为积分常数。解答过程如下:∫√(1+x^2 )dx,令x=tant。原式=∫sect·dtant =sect·tant-∫tantdsect =sect·tant-∫tant·tantsectdt =sect·tant-∫(sec²t-1)sectdt =sect·tant-∫(sec³t...

根号1+x^2的不定积分
具体过程如下:∫√(1+x^2 )dx 令x=tant 原式=∫sect·dtant =sect·tant-∫tantdsect =sect·tant-∫tant·tantsectdt =sect·tant-∫(sec²t-1)sectdt =sect·tant-∫(sec³t-sect)dt =sect·tant-∫sec³tdt+∫sectdt =sect·tant-∫sect·dtant +∫sectdt 所以 2...

根号下1+X方的不定积分怎么求?
结果即为:pi\/4 当然,如果要计算不定积分,则将x用tant代换,那么积分变量可化为1\/cost,分母上下同乘以cost,化为cost\/(1-(sint)^2)将cost化入积分微元,设sint=u 那么,即是对[(1\/(1-u))+(1\/(1+u))]\/2求不定积分。下面的计算应该很简单了,自己算一下,最后的结果分别代入u=sint...

根号(1+x平方)的积分怎么解
x= tanu dx= (secu)^2 du ∫ √(1+x^2) dx =∫ (secu)^3 du =∫ secu dtanu = secu.tanu - ∫ (secu). (tanu)^2 du = secu.tanu - ∫ (secu). [(secu)^2 - 1] du 2∫ (secu)^3 du = secu.tanu + ∫ secu du ∫ (secu)^3 du =(1\/2) [ secu....

根号1+x^2的不定积分
其他回答 C+x+(1\/3)*x^3C为常量。 教父萝卜 | 发布于2010-11-05 举报| 评论 0 6 为您推荐: 不定积分公式大全 分部积分法 不定积分 分步 sinlnxdx的不定积分 不定积分arctan根号X dx\/根号(x^2 1)^3 定积分求导 Lnx\/2的不定积分 不定积分换元法技巧 不定积分第一类换元法 ...

根号下1+x^2的积分是多少?
积分ydx=sqrt(1-x^2)dx=sqrt(1-sin(t)^2)cos(t)dt =cos(t)^2dt=(cos(2t)+1)\/2dt=1\/4sin(2t)+1\/2t+C =1\/2sin(t)cos(t)+1\/2t+C =1\/2xsqrt(1-x^2)+1\/2asin(x)+C

√(1+x^2 )的 不定积分怎么求?(根号下1加上x的平方)
∫√(1+x^2 )dx 令x=tant,原式=∫sect·dtant (注:本式还等于∫sec³tdt)=sect·tant-∫tantdsect =sect·tant-∫tant·tantsectdt =sect·tant-∫(sec²t-1)sectdt =sect·tant-∫(sec³t-sect)dt =sect·tant-∫sec³tdt+∫sectdt =sect·tant-∫sect·...

相似回答