(1-1/2^2)(1-1/3^2) (1-1/4^2)…(1-1/10^2)要详细过程,好让我明白,最好每个步骤都有解释。

如题所述

(1-1/2²)(1-1/3²)(1-1/4²)...(1-1/10²)
=(1+1/2)(1-1/2)(1+1/3)(1-1/3)(1+1/4)(1-1/4)...(1+1/10)(1-1/10) 每个括号内运用平方差公式
=(3/2)(1/2)(4/3)(2/3)(5/4)(3/4)...(11/10)(9/10)
=[(3/2)(4/3)(5/4)...(11/10)][(1/2)(2/3)...(9/10)]
=[(3×4×5×...×11)/(2×3×4×...×10)]×[(1×2×...×9)/(2×3×...×10)]
=(11/2)(1/10)
=11/20
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-04-26
你好:

(1-1/2^2)(1-1/3^2) (1-1/4^2)…(1-1/10^2)
=(1+1/2)(1-1/2)(1+1/3)(1-1/3)(1+1/4)(1-1/4)......(1+1/10)(1-1/10)
=1/2*3/2*2/3*4/3*3/4*5/4......*9/10*11/10 相邻分数分子分母互相约掉
=1/2*11/10
=11/20

希望对你有帮助!
第2个回答  2013-04-26
A1 = 1 - 1/[(1+1)^2] = [(1+1)^2 - 1]/[(1+1)^2] = [(1+1+1)(1+1-1)]/[(1+1)^2] = (1+2)*1/[(1+1)^2]

A2 = (1+3)(1+1)/[(1+2)^2]

A3 = (1+4)(1+2)/[(1+3)^2]

A1 * A2 = (1+2)*1/[(1+1)^2] * (1+3)(1+1)/[(1+2)^2] = [(1+3)*1] / [(1+1)(1+2)] = [(2+2)*1] / [(2+1)(1+1)]

A1*A2*A3 = [(1+3)*1] / [(1+1)(1+2)] * (1+4)(1+2)/[(1+3)^2] = [(1+2+2)*1] / [(1+2+1)(1+1)] = [(3+2)*1] / [(3+1)(1+1)]

A1*A2*A3*……*An = (n+2)/[2(n+1)]

A1*A2*……*A9 = [(9+2)*1] / [(9+1)(1+1)] = 11/20
第3个回答  2013-04-26
解:
(1-1/2^2)(1-1/3^2)(1-1/4^2)……(1-1/10^2)
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)……(1-1/10)(1+1/10)
=(1/2)(3/2)(2/3)(4/3)(3/4)(5/4)……(9/10)(11/10)
=(1/2)*(11/10) (中间的都约分约掉了)
=11/20
第4个回答  2013-04-26
很高兴为您解答:
(1-1/2^2)(1-1/3^2)(1-1/4^2)...(1-1/10^2)
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)...(1-1/10)(1+1/10)
=(1/2)(3/2)(2/3)(4/3)(3/4)(5/4)...(9/10)(11/10)
=(1/2)(11/10)
=11/20
谢谢,祝你开心
有帮助记得采纳哦

(1-1\/2^2)(1-1\/3^2) (1-1\/4^2)…(1-1\/10^2)要详细过程,好让我明白...
=(11\/2)(1\/10)=11\/20

(1-1\/2^2)(1-1\/3^2)(1-1\/4^2)…(1-1\/20^2)=?谢
平方差 =(1-1\/2)(1+1\/2)(1-1\/3)(1+1\/3)……(1-1\/20)(1+1\/20)=(1\/2)(3\/2)(2\/3)(4\/3)……(19\/20)(21\/20)中间约分 =(1\/2)(21\/20)=21\/40

计算:(1-1\/2^2)(1-1\/3^2)(1-1\/4^2)…(1-1\/2012)要详细过程
(1-1\/2^2)(1-1\/3^2)(1-1\/4^2)……*(1-1\/20^2)=(1-1\/2)(1+1\/2)(1-1\/3)(1+1\/3)……*(1-1\/20)(1+1\/20)=1\/2*3\/2*2\/3*4\/3……*19\/20*21\/20 =1\/2*(3\/2*2\/3*4\/3……*19\/20)*21\/20 =1\/2*1*21\/20 =21\/40 ...

求一道题的极限:(1-1\/2^2).(1-1\/3^2).(1-1\/4^2).…….(1-1\/n^2)求...
(1-1\/2??)(1-1\/3??)...(1-1\/n??)=(1+1\/2)(1-1\/2)(1+1\/3)(1-1\/3)...(1+1\/n)(1-1\/n)=[(1+1\/2)(1+1\/3)...(1+1\/n)] * [(1-1\/2)(1-1\/3)...(1-1\/n)]=[(3\/2)(4\/3)...(n+1)\/n]...

(1-1\/2^2)(1-1\/3^2)...(1-1\/10^2)的解
每一项因数都可以看做平方差,例如1-1\/2^2利用平方差公式就等于(1-1\/2)(1+1\/2)因此此题就可以这么解答 注(平方差公式为a^2-b^2=(a+b)(a-b) )1-1\/2^2)(1-1\/3^2)...(1-1\/10^2)=(1-1\/2)(1+1\/2)(1-1\/3)(1+1\/3)...(1-1\/10)(1+1\/10)=(1-1\/2)(1...

(1-1\/2^2)(1-1\/3^3)……(1-1\/10^2)
原理是平方差公式:a^2-b^2=(a+b)(a-b)则 1-1\/2^2=1^2-(1\/2)^2=(1+1\/2)(1-1\/2),其他以此类推 所以 (1-1\/2*2)*(1-1\/3*3)*(1-1\/4*4)*···*(1-1\/10*10)=(1+1\/2)*(1-1\/2)*(1+1\/3)(1-1\/3)*(1+1\/4)(1-1\/4)*...*(1+1\/10)*...

帮忙解个数学题:(1-1\/2^2)(1-1\/3^2)(1-1\/4^2)*...*(1-1\/10^2)
原式=(1+1\/2)(1-1\/2)(1+1\/3)(1-1\/3)*。。。(1+1\/10)(1-1\/10)=3\/2*1\/2*4\/3*2\/3*5\/4*3\/4*11\/10*9\/10.其余的都会相互约分掉,最后只会剩下(1-1\/2)和(1+1\/10)1\/2 * 11\/10=11\/20

计算:(1-1\/2^2)(1-1\/3^2)…(1-1\/9^2)(1-1\/10^2)
运用平方差公式:原式=(1- 1\/2)(1+ 1\/2)(1- 1\/3)(1+ 1\/3)*...*(1- 1\/10)(1 + 1\/10)=(1\/2)*(3\/2)*(4\/3)*(3\/4)*(5\/4)*...*(9\/10)*(11\/10)=(1\/2)*(11\/10)=11\/20

(1-1\/2^2)(1-1\/3^2)(1-1\/4^2)...(1-1\/9^2)(1-1\/10^2)
(1-1\/2^2)(1-1\/3^2)(1-1\/4^2)...(1-1\/9^2)(1-1\/10^2)=(1+1\/2)(1-1\/2)(1+1\/3)(1-1\/3)(1+1\/4)(1-1\/4)---(1+1\/9)(1-1\/9)(1+1\/10)(1-1\/10)=3\/2*1\/2*4\/3*2\/3*5\/4*3\/4*---*10\/9**8\/9*11\/10*9\/10 =1\/2*11\/10 =11\/20 ...

计算:(1-1\/2^2)(1-1\/3^2)(1-1\/4^2)...(1-1\/2009^2)(1-1\/2010^2).
1-1\/2009^2)(1-1\/2010^2).=(1-1\/2)(1+1\/2)(1-1\/3)(1+1\/3)(1-1\/4)(1+1\/4)……(1-1\/2009)(1+1\/2009)(1-1\/2010)(1+1\/2010)=(1\/2)(3\/2)(2\/3)(4\/3)(3\/4)(5\/4)……(2008\/2009)(2010\/2009)(2009\/2010)(2011\/2010)=(1\/2)(2011\/2010)=2011\/4020 ...

相似回答