1/(1×2)=1-1/2;1/(2×3)=1/2-1/3;1/(3×4)=1/3-1/4……按照规律,求1/2+1/6+1/12+^+1/90的值,要过程

谢谢

解1/2=1/1-1/2
1/2*3=1/2-1/3
1/3*4=1/3-1/4
。。。。。。。
1/72=1/8*9=1/8-1/9
1/90=1/9*10=1/9-1/10
上述各式相加得
1/2+1/6+1/12+.......+1/90
=1/1-1/2+1/2-1/3+1/3-1/4+......+1/8-1/9+1/9-1/10
=1-1/10
=9/10追问

不是一直加到1/90吗?

追答

你好不是所加的项为
是有规律的,各项为
1/1*2,1/2*3,1/3*4,1/4*5,1/5*6,1/6*7,1/7*8,1/8*9,1/9*10,

1/2,1/6,1/12,1/20,1/30,1/42,1/56,1/72,1/90,

追问

哦~谢谢谢谢

温馨提示:内容为网友见解,仅供参考
第1个回答  2013-04-25
原式=1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10=1-1/10=9/10

...1\/3,1\/3×4=1\/3-1\/4 求和1\/1×2+1\/2×3+1\/3×4+...+1\/2009×2010...
1\/(2×3)=(1\/2)-(1\/3);1\/(3×4)=(1\/3)-(1\/4);从上可以看出,等式左边可以拆成二个分母组成的分式之差,分子都为1,分母分别为为n和n+1 1\/[n(n+1)]=(1\/n)-[1\/(n+1)](2)证明:等式右边=(1\/n)-[1\/(n+1)]=(n+1)\/[n(n+1)]-n\/[n(n+1)]=(n+1-n)\/...

...1\/1*2=1-1\/2,1\/2*3=1\/2-1\/3,1\/3*4=1\/3-1\/4,…根据以上规律填空:1...
所以 1\/201*203=(1\/2)(1\/201-1\/203)所以 1\/ab+1\/(a+2)(b+2)+1\/(a+4)(b+4)+…+1\/(a+200)(b+200)=1\/(1x3)+1\/(3x5)+1\/(5×7)+…+1\/(201x203)=1\/2[(1-1\/3)+(1\/3-1\/5)+(1\/5-1\/7)+…+(1\/201-1\/203)]=1\/2[1-1\/203]=10...

1\/2=1\/1×2=1\/1-1\/2 1\/6=1\/2×3=1\/2-1\/3 1\/12=1\/3×4=1\/3-1\/4...
1\/2=1\/1×2=1\/1-1\/2 1\/6=1\/2×3=1\/2-1\/3 1\/12=1\/3×4=1\/3-1\/4 ···1.求规律1\/n(n+1)=1\/n-1\/(n+1)2.利用规律计算 1\/2+1\/6+1\/12···+1\/(n-1)n +1\/(n+1)n =1-1\/2+1\/2-1\/3+1\/3-1\/4+……+1\/(n-1)-1\/n+1\/n-1\/(n+1)=1-1\/...

观察下面的变形规律:1\/1×2=1-1\/2;1\/2×3=1\/2-1\/3;解答下列问题:1\/9...
答案是:1\/n-1\/(n+1),这是根据通分后的两数相减的算法的,它的前面其实我觉得少了括号,应该是1\/(n*(n+1))才对,像1\/1*2,应该是1\/(1*2)才对

1\/2=1-1\/2,1\/6=1\/2-1\/3,1\/12=1\/3-1\/4,⋯请根据上面算式中的规律,完成...
解 原式 =(1-1\/2)+(1\/2-1\/3)+……+(1\/7-1\/8)=1+(1\/2-1\/2)+(1\/3-1\/3)+……+(1\/7-1\/7)-1\/8 =1-1\/8 =7\/8

小学奥数题1\/(1*2)+1\/(2*3)+1\/(3*4)+...+1\/(99*100)
1\/(1*2)+1\/(2*3)+1\/(3*4)+1\/(4*5)+1\/(5*6)+……+1\/(98*99)+1\/(99*100)=1-1\/2+1\/2-1\/3+...+1\/99-1\/100 =1-1\/100 =99\/100

...再填写1\/2*1\/3=1\/(2*3)=1\/2-1\/3 1\/3*1\/4=1\/(3
1\/2 * 1\/3 = 1\/(23) = 1\/61\/3 * 1\/4 = 1\/(34) = 1\/12 可以总结出模式:当两个分数相乘时,分母相乘作为新的分母,而新的分子为两个原始分数的分子相乘。因此可以推测:1\/4 * 1\/5 = 1\/(45) = 1\/201\/5 * 1\/6 = 1\/(56) = 1\/30 依此类推,你可以继续尝试其他的算式...

数列题 1×1\/2+1\/2×1\/3+1\/3×1\/4+1\/4×1\/5+...+1\/99×1\/100=多少...
原式=1\/2+1\/6+1\/12+...+1\/9900 =1\/(1×2)+1\/(2×3)+1\/(3×4)+...+1\/(99×100)=(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/99-1\/100)=1-1\/100 =99\/100 解答完毕!解答的很详细了,应该可以看的很清楚。祝学习愉快!

1\/1×2+1\/2×3+1\/3×4+...1\/99×100怎么算
1\/1×2+1\/2×3+1\/3×4+...1\/99×100 =(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/99-1\/100)把每一项都拆开来,前后抵消,最后只剩下1-1\/100=99\/100

我们知道 1-1\/2=1\/2;1\/2-1\/3=1\/6;1\/3-1\/4=12...请根据以上规律计算...
回答:原式=1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+……+1\/99-1\/100 =1-1\/100 =99\/100

相似回答