∫1/x*√[(1-x)/(1+x)]dx

如题所述

∫1/x*√[(1-x)/(1+x)]dx的结果等于ln|1/x-√(1-x^2)/x|-arcsinx+C。

解:∫1/x*√((1-x)/(1+x))dx

=∫√(1-x^2)/(x*(1+x))               (令x=sint)

=∫cost/(sint*(1+sint))dsint

=∫(cost)^2/(sint*(1+sint))dt

=∫(1-(sint)^2)/(sint*(1+sint))dt

=∫(1-sint)/sintdt

=∫1/sintdt-∫1dt

=ln|csct-cott|-t+C

又x=sint,那么csct=1/x,cott=√(1-x^2)/x,t=arcsinx

所以∫1/x*√((1-x)/(1+x))dx=ln|csct-cott|-t+C

=ln|1/x-√(1-x^2)/x|-arcsinx+C

扩展资料:

1、换元积分法

(1)第一类换元法(即凑微分法)

通过凑微分,最后依托于某个积分公式。进而求得原不定积分。

例:∫cos3xdx=1/3∫cos3xd(3x)=1/3sin3x+C 直接利用积分公式求出不定积分。

(2)三角换元法

通过三角函数之间的相互关系,进行三角换元,把元积分转换为三角函数的积分。

2、三角函数转换关系

1=(sinA)^2+(cosA)^2、(secA)^2=1+(tanA)^2

3、常见积分公式

∫mdx=mx+C、∫1/xdx=ln|x|+C、∫sinxdx=-cosx+C、∫e^xdx=e^x+C

参考资料来源:百度百科-不定积分

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2018-03-07
令√[(1-x)/(1+x)]=t
则x=(1-t²)/(1+t²), dx=[-4t/(1+t²)²]dt
原式=∫ -4t²/[(1-t²)(1+t²)] dt
=2∫ 1/(1+t²)dt -∫1/(1-t) dt-∫ 1/(1+t) dt
=2arctant+ln|1-t|-ln|1+t|+C
再把t代回上式就可以了,不会很麻烦!
不明白可以追问,如果有帮助,请选为满意回答!本回答被提问者和网友采纳
第2个回答  2012-11-23
这题目表示得不明白,看不懂
相似回答