1×2×3+2×3×4+3×4×5+……+100x101x102=?
解析:n(n+1)(n+2)=n^3+3n^2+2n 1×2×3+2×3×4+3×4×5+……n(n+1)(n+2)=(1^3+2^3+……+n^3)+3*(1^2+2^2+……+n^2)+2*(1+2+……+n)1^3+2^3+……+n^3=[n(n+1)\/2]^2 1^2+2^2+……+n^2=n(n+1)(2n+1)\/6 1+2+……+n=n(n+1)\/...
1×2×3+2×3×4+3×4×5+……n(n+1)(n+2)
n= 2 和是 30 n= 3 和是 90 n= 4 和是 210 n= 5 和是 420 n= 6 和是 756 n= 7 和是 1260 n= 8 和是 1980 n= 9 和是 2970 n= 10 和是 4290 n= 11 和是 6006 n= 12 和是 8190 n= 13 ...
1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=?
1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=1\/4×n(n+1)(n+2)(n+3)。解答过程如下:1×2×3+2×3×4+3×4×5+...+n(n+1)(n+2)=1\/4【1×2×3×4-0×1×2×3】+1\/4【2×3×4×5-1×2×3×4】+1\/4【3×4×5×6-2×3×4×5】+...+ 1\/4【n(...
1*2*3+2*3*4+3*4*5+...+n(n+1)(n+2)
解:裂项法 n*(n+1)*(n+2)=1\/4*n*(n+1)*(n+2)[n+3-(n-1)]Sn=1*2*3+2*3*4+3*4*5+...+n*(n+1)*(n+2)=1\/4{1*2*3*(4-0)+2*3*4*(5-1)+3*4*5*(6-2)...+n*(n+1)*(n+2)[n+3-(n-1)]} 如此裂项相消 原式= n*(n+1)*(n+2)*(n+3...
1*2*3+2*3*4+3*4*5+...+n*(n+1)*(n+2),怎么求和的,我想知道详细过程...
因为 n*(n+1)*(n+2)=n^3 +3n^2 +2n 所以1*2*3+2*3*4+3*4*5+...+n*(n+1)*(n+2)=(1^3 +2^3 +3^3+...+n^3)+3(1^2 +2^2 +3^2+...+n^2)+2(1+2+3+...+n)=n^2*(n+1)^2 \/4 +3*n*(n+1)*(2n+1)\/6 +2*n(n+1)\/2 =...
找规律!!!1×2×3+2×3×4+...+n(n+1)(n+2)=?
不过说实话,这种裂项的方法我也是第一次看到,所以再谢一下 解答如下 1*2*3=1\/4(1*2*3*4-1*2*3*0)2*3*4=1\/4(2*3*4*5-1*2*3*4)3*4*5=1\/4(3*4*5*6-2*3*4*5)6………通项i*(i+1)(i+2)=1\/4(i*(i+1)*(i+2)*(i+3)-(i-1)i*(i+1)*(i+2))...
1乘2乘3+2乘3乘4+3乘4乘5 +...+N乘(N+1)乘(N+2)=
公式:n(n+1)(n+2)=(1\/4)[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]1×2×3+2×3×4+...+n(n+1)(n+2)=(1\/4)[1×2×3×4-0×1×2×3+2×3×4×5-1×2×3×4+...+n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]=n(n+1)(n+2)(n+3)\/4 如果...
1×2×3+2×3×4+3×4×5+…+9×10×11=___ 小学奥数整数裂项,急求...
n(n+1)(n+2)=n³+3n²+2n. n=1,2,3,4,,,取n=1,2,3,,,9 原式 =(1³+2³+3³+...+9³)+3(1²+2²+3²+...+9²)+2(1+2+3+...+9)=[9(1+9)\/2]²+3[9×10×19\/6]+9×10 =45²+855...
1×2×3+2×3×4+3×4×5…+n(n+1)(n+2)=
n(n+1)(n+2)(n+3)\/4
计算1*2*3+2*3*4+3*4*5+4*5*6+...+n(n+1)(n+2)
1×2×3+2×3×4+3×4×5+……n(n+1)(n+2)=(1^3+2^3+……+n^3)+3*(1^2+2^2+……+n^2)+2*(1+2+……+n)1^3+2^3+……+n^3=[n(n+1)\/2]^2 1^2+2^2+……+n^2=n(n+1)(2n+1)\/6 1+2+……+n=n(n+1)\/2 所以原式=[n(n+1)\/2]^2+3n(n+1...