不定积分公式:∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。
不定积分的积分公式主要有如下几类:
含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a²+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分、含有√(|a|x^2+bx+c) (a≠0)的积分。
含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双曲函数的积分。
扩展资料:
积分性质
1、线性性
积分是线性的。如果一个函数f 可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。
2、保号性
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。
函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。
参考资料来源:百度百科—积分公式
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
11)∫1/(1+x^2)dx=arctanx+c
12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c
扩展资料:
积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。
比如说,路径积分是多元函数的积分,积分的区间不再是一条线段(区间[a,b]),而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。
求不定积分的方法:
第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)
分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)
本回答被网友采纳不定积分的计算公式是什么?
不定积分的公式 1、∫ a dx = ax + C,a和C都是常数 2、∫ x^a dx = [x^(a + 1)]\/(a + 1) + C,其中a为常数且 a ≠ -1 3、∫ 1\/x dx = ln|x| + C 4、∫ a^x dx = (1\/lna)a^x + C,其中a > 0 且 a ≠ 1 5、∫ e^x dx = e^x + C 6、∫ c...
不定积分基本公式
一:不定积分的公式 1. ∫ a dx = ax + C,其中a和C都是常数。2. ∫ x^a dx = [x^(a + 1)]\/(a + 1) + C,其中a为常数且 a ≠ -1。3. ∫ 1\/x dx = ln|x| + C。4. ∫ a^x dx = (1\/lna)a^x + C,其中a > 0 且 a ≠ 1。5. ∫ e^x dx = e^x ...
不定积分常用公式
常用不定积分公式如下:1、∫0dx=c。2、∫x^udx=(x^(u+1))\/(u+1)+c。3、∫1\/xdx=ln|x|+c。4、∫a^xdx=(a^x)\/lna+c。5、∫e^xdx=e^x+c。6、∫sinxdx=-cosx+c。不定积分其他情况简介:许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分...
不定积分的24个基本积分公式是什么?
不定积分:不定积分的积分公式主要有如下几类:含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a²+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分、含有√(|a|x^2+bx+c) (a≠0)的积分、含有三角函数的积分、...
不定积分公式
不定积分公式:∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。不定积分的积分公式主要有如下几类:含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2...
不定积分的公式是什么?
不定积分的公式主要有以下几种:1. 常数项公式:∫kdx = kx + C (其中k为常数,C为积分常数)2. 变量代换公式:若u = g(x),则有:∫f(g(x))g'(x)dx = ∫f(u)du (其中u是g(x)的函数)3. 代数和函数积分公式:常用的如下所示:∫x^n dx = (1\/(n+1))x^(n+...
不定积分的计算公式是什么?
解答如下:secx=1\/cosx ∫secxdx=∫1\/cosxdx=∫1\/(cosx的平方)dsinx =∫1\/(1-sinx的平方)dsinx 令sinx=t代人可得:原式=∫1\/(1-t^2)dt=1\/2∫[1\/(1-t)+1\/(1+t)]dt =1\/2∫1\/(1-t)dt+1\/2∫1\/(1+t)dt =-1\/2ln(1-t)+1\/2ln(1+t)+C 将t=sinx代人可得 原式=...
不定积分的公式是什么?
分部积分 ∫lnx dx =xlnx-∫x d lnx =x lnx-∫dx =xlnx-x+C
不定积分的公式有哪些 最好比较全
1)∫0dx=c 不定积分的定义 2)∫x^udx=(x^(u+1))\/(u+1)+c 3)∫1\/xdx=ln|x|+c 4)∫a^xdx=(a^x)\/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1\/(cosx)^2dx=tanx+c 9)∫1\/(sinx)^2dx=-cotx+c 10)∫1\/√(1-x^2)dx=arc...
不定积分的计算公式?
∫[sinx\/(1+sinx)]dx =∫[sinx(1-sinx)\/cos2x]dx =∫tanxsecxdx-∫(sec2x-1)dx =secx-tanx+x+c