高等数学 求高阶导数的方法
复习指南上面写的。
分式有理函数的高阶导数
利用函数的泰勒级数展开式
递推公式求N阶导数
莱布尼兹公式
第一种方法,我不懂。是让求y=(ax+b)/(cx+d) n阶导数。
多项式除法?是什么意思。
但是这个可以用莱布尼兹公式算的吧?
用泰勒公式 是不是一般算一个函数的n阶
用莱布尼兹公式 是求两个相乘函数 而且有一个的(比如说3级)之后全为0比较好用
递推公式 是这两种方法都不能用的时候?
1ãå¨èç æ°å¦ä¸ï¼å¯¼æ°æ¯ä¸ä¸ªå¾éè¦çåºæ¬æ¦å¿µï¼èç 大纲é¤äºè¦æ±ç解导æ°çæ¦å¿µå¤ï¼è¿è¦æ±è½çç»å°è®¡ç®å½æ°ç导æ°ã
2ã常è§ç导æ°è®¡ç®é®é¢å æ¬ï¼å¤åå½æ°çæ±å¯¼ï¼åå½æ°çæ±å¯¼ï¼ä»¥åæ°æ¹ç¨å½¢å¼è¡¨ç¤ºçå½æ°çæ±å¯¼ï¼å½æ°çé«é¶å¯¼æ°ç计ç®ï¼ä¸é¶åäºé¶å导æ°ç计ç®ãå ¶ä¸å ³äºé«é¶å¯¼æ°ç计ç®ï¼æäºåå¦ç±äºæ²¡æææ¡æ£ç¡®ç计ç®æ¹æ³ï¼å¯¼è´è§£é¢æ¶æ ä»ä¸æã
ä¸é¢å°±æ¯èç æ°å¦ä¸å ³äºå½æ°çé«é¶å¯¼æ°çå ç§åºæ¬è®¡ç®æ¹æ³çåæï¼ä¾èç们åèåé´ã
求高阶导数的方法主要有以下两种情况:
单个函数的高阶导数,可以用公式求导,这与函数的类型有关系,例如一次函数,二次函数,幂函数,指数函数,三角函数等等。其中(a,b∈R,a≠0,n>2):
y=ax+b,y(n)=0。
y=ax^2+bx+c,y(n)=0。
y=sinx,y(n)=sin(x+nπ/2)。
y=e^x,y(n)=e^x。
y=a^x,y(n)=a^x*(lna)^n
两个u,v函数及多个函数乘积的导数,则一般用公式y(n)=Σ(0,n)C(n,r)(n)*v(n-r).
一般来讲,首先看它是不是常见的那几个函数(指数函数,三角函数)什么的,如果是,直接套公式;
其次:如果不是,则看能不能写成上面几个函数的和式或者乘积表达式,如果是和式,直接用求导法则,如果是乘积,用莱布尼兹法则写出通项后求和即可
再次:观察可不可以对函数求出几阶导数之后变成上面的两种情况;
最后,实在不行,看看能不能用数学归纳法求解。
上面的方法没有前后顺序,呵呵,关键看你的数学感觉。
1、一般来说,当然就是一次一次地求导,要几次导数给几次;
2、上面的方法比较沉闷,而且容易出错,通常根据被求导的函数,求几次导数后,
根据结果,找到规律,然后用归纳法,证明结果正确;
3、在解答麦克劳林级数、泰勒级数时,经常要求高阶导数,找规律是非常需要技巧的,
很多情况下,递推公式(Redunction)是很难找到。
实在找不到时,只能写一个抽象的表达式。
步骤:
第一步:确定函数的定义域.如本题函数的定义域为R.
第二步:求f(x)的导数f′(x).
第三步:求方程f′(x)=0的根.
第四步:利用f′(x)=0的根和不可导点的x的值从小到大顺次将定义域分成若干个小开区间,并列出表格.
第五步:由f′(x)在小开区间内的正、负值判断f(x)在小开区间内的单调性.
第六步:明确规范地表述结论.
第七步:反思回顾.查看关键点、易错点及解题规范.
这个公式是说,对y(x)=u(x)v(x)求n阶导数时候,可以表示为u(x)的n-i阶导数乘v(x)的i阶导数的积的叠加,其系数是C(i,n)。
那个C是组合符号,
C(i,n)=n!/(i!(n-i)!)
莱布尼兹公式好比二项式定理,它是用来求f(x)*g(x)的高阶导数的。展开的形式我就不多说了。
一般来说,f(x)和g(x)中有一个是多项式,因为n次多项式求n+1次导数就变成0了,可以给计算带来方便。
就本题:
y的100阶导数=(x的0阶导数*shx的100阶导数)+100(x的1阶导数*shx的99阶导数)+99*100/2(x的2阶导数*shx的98阶导数)+......
如前所说,x的2阶以上导数都是0,所以上式只有前两项,
所以:y的100阶导数=xshx+100chx
1.把常用初等函数的导数公式记清楚;
2.求导时要小心谨慎,尤其是关于复合函数的导数。
这里将列举六类基本初等函数的导数以及它们的推导过程(初等函数可由之运算来):
1.常函数(即常数)y=c(c为常数) y'=0 【y=0 y'=0:导数为本身的函数之一】
2.幂函数y=x^n,y'=n*x^(n-1)(n∈R) 【1/X的导数为-1/(X^2)】
基本导数公式
3.指数函数y=a^x,y'=a^x * lna 【y=e^x y'=e^x:导数为本身的函数之二】
4.对数函数y=logaX,y'=1/(xlna) (a>0且a≠1,x>0);【y=lnx,y'=1/x】
5.三角函数
(1)正弦函数y=(sinx )y'=cosx
(2)余弦函数y=(cosx) y'=-sinx
(3)正切函数y=(tanx) y'=1/(cosx)^2
(4)余切函数y=(cotx) y'=-1/(sinx)^2
6.反三角函数
(1)反正弦函数y=(arcsinx) y'=1/√1-x^2
(2)反余弦函数y=(arccosx) y'=-1/√1-x^2
(3)反正切函数y=(arctanx) y'=1/(1+x^2)
(4)反余切函数y=(arccotx) y'=-1/(1+x^2)
幂函数同理可证
导数说白了它其实就是曲线一点切线的斜率,函数值的变化率
上面说的分母趋于零,这是当然的了,但不要忘了分子也是可能趋于零的,所以两者的比就有可能是某一个数,如果分子趋于某一个数,而不是零的话,那么比值会很大,可以认为是无穷大,也就是我们所说的导数不存在。
x/x,若这里让X趋于零的话,分母是趋于零了,但它们的比值是1,所以极限为1.
建议先去搞懂什么是极限。极限是一个可望不可及的概念,可以很接近它,但永远到不了那个岸。
导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了卓越的贡献。
最后讲一下你那个题:
====很简单,把原式看做(ax+b)和1/(cx+d)相乘的n阶导数,然后用莱布尼茨公式展开就行了。注意(ax+b)二阶以上的导数全部是0,而1/(cx+d)的n阶导数很好求。
结果应该是:(ax+b)×[(-c)^n×n!/(cx+d)^(n+1)]+n×a×[(-c)^(n-1)×(n-1)!/(cx+d)^n]
刚才失误了。。。忘了阶乘。。。
答案是正确的,你把我的解答同分一下化简就会发现跟答案一样。你自己做的应该是不对的。可以取n=2,3的特殊情况看一下。
免费领入学礼包有礼
现在入学礼包等你来领
考研,数学,求高阶导数的各种方法!!
1、在考研数学中,导数是一个很重要的基本概念,考研大纲除了要求理解导数的概念外,还要求能熟练地计算函数的导数。2、常见的导数计算问题包括:复合函数的求导,反函数的求导,以参数方程形式表示的函数的求导,函数的高阶导数的计算,一阶和二阶偏导数的计算。其中关于高阶导数的计算,有些同学由于没...
考研数学技巧篇5:求解高阶导数的方法汇总(介绍四种常用的方法)
方法一:线性运算法则 使用线性运算法则求解高阶导数。例如,求函数[公式][公式]的[公式]阶导数的一般表示式。通过线性运算法则,可以将求解简化为[公式][公式][公式]。方法二:先求一阶导数后套公式 此法先求得函数的初阶导数,然后根据已知公式进行递推求解高阶导数。以函数[公式]为例,求[公式]阶...
考研常用的n阶导数公式
首先,我们来讨论一阶导数的公式。如果函数f(x)在点x处可导,那么它的一阶导数可以用以下公式表示:f'(x)=lim(h→0) [f(x h)?f(x)]\/h。这个公式给出了函数在某一点的瞬时变化率,是我们计算其他高阶导数的基础。接下来,我们来研究二阶导数的公式。如果函数f(x)在点x处两次可导,那么它...
考研24个基本求导公式是哪些?
1、幂函数: 若 f(x) = x^n,其中 n 为正整数,则 f^(n)(x) = n!,其中 n! 表示 n 的阶乘。幂函数是一种常见的数学函数,其定义形式为 f(x) = x^n,其中 x 是自变量,n 是指数。幂函数描述了一个变量与自身连乘多次的关系。2、指数函数:若 f(x) = e^x,则 f^(n)(x)...
高阶导数考研重要吗
还必须能够解决与高阶导数相关的问题,如求解特定点处的高阶导数值,以及利用高阶导数分析函数性质等。掌握高阶导数的相关知识,不仅有助于提高解题能力,还能增强考生对数学分析的理解,为后续学习打下坚实基础。因此,考生应当重视高阶导数的学习,通过多做练习题,加深对这一知识点的理解和掌握。
考研张宇高等数学 关于高阶导数求导看不懂 为什么第二部把sinx用泰勒...
因为前面有个因子是x^3啊,sinx的泰勒展开中五次及以上的项(还有一次项)乘以x^3,求6阶导后在x=0处取值都是0了;只有三次项能带来非零的值。
关于考研数学高阶微分方程求特解计算的问题。请问这个怎么求?求简便...
您好,答案如图所示:这类题目估计没人会逐个求导步骤写出来的,还是软件辅助吧 一阶导数:二阶导数:化简得:6ax+2b=3x 解得a=1\/2,b=0 很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢...
莱布尼兹公式高阶导数是什么?
考研中高阶导数的计算方法主要有三种:一是基本的阶求导公式,结合复合函数的求导法则,求阶导数公式推到的一般的方法是采用由低到逐阶求导的方法。二是可以借助于泰勒公式的间接展开式,对比系数得出阶导数,这可以针对当求解阶导数的一般公式很难归纳时使用。三则是莱布尼茨公式针对解决两个函数相乘的导数...
高等数学,求高阶导数,已经把y的表达式算出来了,最后怎么算
得讨论n的奇偶性。n为偶数n=2m时,n阶导数是(-1)^m\/(2m+1)!=(-1)^(n\/2)\/(n+1)!;n为奇数时,n阶导数是0。
多元复合函数高阶偏导求法
多元复合函数高阶偏导求法如下:一、多元复合函数偏导数 上面公式可以简单记为“连线相乘,分线相加”;也可以借助微分形式不变性,即函数有几个中间变量,则偏导有几部分组成(不排除个别部分为零).二、多元复合函数二阶偏导数 对于复合函数二阶偏导数,关键需要理解函数对中间变量的偏导数依然为多元...